The Magnetic Eden Model

In the magnetic Eden model (MEM), particles have a spin and grow in contact with a thermal bath. Although Ising-like interactions affect the growth dynamics, deposited spins are frozen and not allowed to flip. This paper focuses on recent developments and future prospects, such as spontaneous switching phenomena, critical behavior associated with fractal, wetting, and order-disorder phase transitions, the equilibrium/nonequilibrium correspondence conjecture, as well as dynamical and critical features of the MEM defined on complex network substrates.

[1]  C. Hannay,et al.  Terrace structures in DyBa2Cu3O7−x grown in a magnetic field , 1992 .

[2]  R. Jullien,et al.  Scaling properties of the surface of the Eden model in d=2, 3, 4 , 1985 .

[3]  Critical phenomena in morphology transitions of growth models with competition. , 1995, Physical review letters.

[4]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[5]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[6]  Marcel Ausloos,et al.  Magnetic Eden model , 1993 .

[7]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[8]  Systems with Multiplicative Noise: Critical Behavior from KPZ Equation and Numerics , 1996, adap-org/9608002.

[9]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[10]  Bode,et al.  Real-space observation of dipolar antiferromagnetism in magnetic nanowires by spin-polarized scanning tunneling spectroscopy , 2000, Physical review letters.

[11]  G. Haag Book review: Sociodynamics–A systematic approach to mathematical modelling in the social sciences, by Wolfgang Weidlich , 2000 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[14]  R. Skomski,et al.  Magnetism in one dimension: Fe on Cu(111) , 1997 .

[15]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[16]  Hans J. Herrmann,et al.  Geometrical cluster growth models and kinetic gelation , 1986 .

[17]  Anisotropy and scaling of Eden clusters in two and three dimensions , 1986 .

[18]  A predictive tool in micro- and nanoengineering: Straightforward estimation of conformal film growth efficiency , 2002, cond-mat/0210139.

[19]  A. Maritan,et al.  Stochastic growth equations and reparametrization invariance , 1996 .

[20]  M. Ausloos,et al.  Growth of Cayley and diluted Cayley trees with two kinds of entities , 1996 .

[21]  Pontus Svenson,et al.  Damage spreading in small world Ising models. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  E. Albano,et al.  Monte Carlo simulation of the irreversible growth of magnetic thin films , 2001, cond-mat/0608075.

[23]  Moshe Gitterman,et al.  Small-world phenomena in physics: the Ising model , 2000 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  T. Vicsek,et al.  Dynamics of fractal surfaces , 1991 .

[26]  D. Stauffer,et al.  Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.

[27]  Eden growth model for aggregation of charged particles , 1998, cond-mat/9806345.

[28]  Julián Candia,et al.  Irreversible growth of binary mixtures on small-world networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Wolfgang Weidlich,et al.  Sociodynamics: a Systematic Approach to Mathematical Modelling in the Social Sciences , 2000 .

[30]  Quasiwetting and morphological phase transitions in confined far-from-equilibrium magnetic thin films , 2002 .

[31]  Clelia M. Bordogna,et al.  Statistical methods applied to the study of opinion formation models: a brief overview and results of a numerical study of a model based on the social impact theory , 2007 .

[32]  C. Herrero,et al.  Ising model in scale-free networks: a Monte Carlo simulation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Magnetically controlled ballistic deposition. A model of polydisperse granular packing , 2003, cond-mat/0303527.

[34]  T. Moffat,et al.  Superconformal electrodeposition in submicron features. , 2001, Physical review letters.

[35]  Juli'an Candia,et al.  Non-equilibrium wetting transition in a magnetic Eden model , 2000 .

[36]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[37]  M. Farle,et al.  Two Susceptibility Maxima and Element Specific Magnetizations in Indirectly Coupled Ferromagnetic Layers , 1998 .

[38]  Grinstein,et al.  Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.

[39]  Dietrich Stauffer,et al.  Surface structure and anisotropy of Eden clusters , 1985 .

[40]  H. Freund,et al.  Influence of the metal substrate on the adsorption properties of thin oxide layers: Au atoms on a thin alumina film on NiAl(110). , 2006, Physical review letters.

[41]  G. Ódor Universality classes in nonequilibrium lattice systems , 2002, cond-mat/0205644.

[42]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[43]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[44]  Julián Candia,et al.  Irreversible opinion spreading on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  K. N. Dollman,et al.  - 1 , 1743 .

[46]  MODEL FOR NONEQUILIBRIUM WETTING TRANSITIONS IN TWO DIMENSIONS , 1997, cond-mat/9706031.

[47]  E. Albano,et al.  Order-disorder criticality, wetting, and morphological phase transitions in the irreversible growth of far-from-equilibrium magnetic films , 2002, cond-mat/0209653.

[48]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[49]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[51]  E V Albano,et al.  Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[53]  J. R. Pierce,et al.  Symposium on Information Theory in Biology , 1959 .

[54]  H. Katzgraber Introduction to Monte Carlo Methods , 2009, 0905.1629.

[55]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[56]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[57]  Corner wetting in a far-from-equilibrium magnetic growth model , 2005, cond-mat/0509503.

[58]  Vandewalle,et al.  Magnetic diffusion-limited aggregation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  E V Albano,et al.  Theoretical description of teaching-learning processes: a multidisciplinary approach. , 2001, Physical review letters.

[60]  C. Herrero Ising model in small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  T. Witten,et al.  Long-range correlations in smoke-particle aggregates , 1979 .

[62]  Dynamic critical behavior of the XY model in small-world networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[64]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[65]  Murray T. Batchelor,et al.  Limits to Eden growth in two and three dimensions , 1991 .

[66]  M. Napiórkowski,et al.  Filling transition for a wedge. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  S. S. Rath,et al.  Conference proceedings , 1999, 1987 IEEE Applied Power Electronics conference and Exposition.

[68]  M. Ausloos,et al.  Magnetic kinetic growth models , 1995 .

[69]  George Sugihara,et al.  Fractals in science , 1995 .