Lexicon-based sentiment analysis by mapping conveyed sentiment to intended sentiment

As consumers nowadays generate increasingly more content describing their experiences with, e.g., products and brands in various languages, information systems monitoring a universal, language-independent measure of people's intended sentiment are crucial for today's businesses. In order to facilitate sentiment analysis of user-generated content, we propose to map sentiment conveyed by unstructured natural language text to universal star ratings, capturing intended sentiment. For these mappings, we consider a monotonically increasing step function, a naive Bayes method, and a support vector machine. We demonstrate that the way in which natural language reveals intended sentiment differs across our datasets of Dutch and English texts. Additionally, the results of our experiments on modelling the relation between conveyed sentiment and intended sentiment suggest that language-specific sentiment scores can separate universal classes of intended sentiment from one another to a limited extent.

[1]  A. Wierzbicka Emotion and Facial Expression: A Semantic Perspective , 1995 .

[2]  Philip W. Davis,et al.  Alternative Linguistics: Descriptive and theoretical modes , 1996 .

[3]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[4]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[5]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[6]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[7]  Carlo Strapparava,et al.  Cross Language Text Categorization by Acquiring Multilingual Domain Models from Comparable Corpora , 2005, ParallelText@ACL.

[8]  Diego Reforgiato Recupero,et al.  OASYS: An Opinion Analysis System , 2006, AAAI 2006.

[9]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[10]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[11]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[12]  Qiang Yang,et al.  Transferring Naive Bayes Classifiers for Text Classification , 2007, AAAI.

[13]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[14]  Marie-Francine Moens,et al.  A machine learning approach to sentiment analysis in multilingual Web texts , 2009, Information Retrieval.

[15]  Steven Skiena,et al.  International Sentiment Analysis for News and Blogs , 2021, ICWSM.

[16]  Kimberly D. Voll,et al.  Extracting sentiment as a function of discourse structure and topicality , 2008 .

[17]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[18]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[19]  Prem Melville Social Media Analytics: Channeling the Power of the Blogosphere for Marketing Insight , 2009 .

[20]  Xiaojun Wan,et al.  Co-Training for Cross-Lingual Sentiment Classification , 2009, ACL.

[21]  Katja Hofmann,et al.  Generating a Non-English Subjectivity Lexicon: Relations That Matter , 2009, EACL.

[22]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[23]  Mike Thelwall,et al.  A Study of Information Retrieval Weighting Schemes for Sentiment Analysis , 2010, ACL.

[24]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[25]  Uzay Kaymak,et al.  Mining Economic Sentiment Using Argumentation Structures , 2010, ER Workshops.

[26]  Uzay Kaymak,et al.  Determining negation scope and strength in sentiment analysis , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[27]  Flavius Frasincar,et al.  Sentiment Analysis with a Multilingual Pipeline , 2011, WISE.

[28]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[29]  Uzay Kaymak,et al.  A framework for automatic annotation of web pages using the Google rich snippets vocabulary , 2011, SAC.

[30]  Uzay Kaymak,et al.  Polarity analysis of texts using discourse structure , 2011, CIKM '11.

[31]  Uzay Kaymak,et al.  Analyzing Sentiment in a Large Set of Web Data While Accounting for Negation , 2011, AWIC.

[32]  David E. Losada,et al.  Effective and efficient polarity estimation in blogs based on sentence-level evidence , 2011, CIKM '11.

[33]  Flavius Frasincar,et al.  A Statistical Approach to Star Rating Classification of Sentiment , 2012, IS-MiS.

[34]  Erik Cambria,et al.  Sentic Computing: Techniques, Tools, and Applications , 2012 .

[35]  David E. Losada,et al.  Sentiment-Based Ranking of Blog Posts Using Rhetorical Structure Theory , 2013, NLDB.

[36]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[37]  Uzay Kaymak,et al.  Exploiting emoticons in sentiment analysis , 2013, SAC '13.

[38]  Björn W. Schuller,et al.  New Avenues in Opinion Mining and Sentiment Analysis , 2013, IEEE Intelligent Systems.