Total Domination Versus Domination in Cubic Graphs

A dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number, $$\gamma (G)$$γ(G), and total domination number, $$\gamma _{t}(G)$$γt(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, $$\Gamma (G)$$Γ(G), and the upper total domination number, $$\Gamma _t(G)$$Γt(G), are the maximum cardinalities of a minimal dominating set and total dominating set, respectively, in G. It is known that $$\gamma _{t}(G)/\gamma (G) \le 2$$γt(G)/γ(G)≤2 and $$\Gamma _{t}(G)/\Gamma (G) \le 2$$Γt(G)/Γ(G)≤2 for all graphs G with no isolated vertex. In this paper we characterize the connected cubic graphs G satisfying $$\gamma _{t}(G)/\gamma (G) = 2$$γt(G)/γ(G)=2, and we characterize the connected cubic graphs G satisfying $$\Gamma _{t}(G)/\Gamma (G) = 2$$Γt(G)/Γ(G)=2.

[1]  Michael A. Henning,et al.  Hypergraphs with large transversal number , 2013, Discret. Math..

[2]  Michael A. Henning,et al.  Total Domination in Graphs with Diameter 2 , 2013 .

[3]  Zsolt Tuza,et al.  Covering all cliques of a graph , 1991, Discret. Math..

[4]  Michael A. Henning,et al.  Edge Weighting Functions on Dominating Sets , 2013, J. Graph Theory.

[5]  Michael A. Henning,et al.  Total dominating sequences in graphs , 2016, Discret. Math..

[6]  Michael A. Henning,et al.  Total domination in graphs with minimum degree three , 2000 .

[7]  Raphael Yuster,et al.  Some remarks on domination , 2004, J. Graph Theory.

[8]  Paul Dorbec,et al.  On the upper total domination number of Cartesian products of graphs , 2008, J. Comb. Optim..

[9]  Michael A. Henning,et al.  A survey of selected recent results on total domination in graphs , 2009, Discret. Math..

[10]  Raphael Yuster,et al.  Some remarks on domination , 2004 .

[11]  Colin McDiarmid,et al.  Small transversals in hypergraphs , 1992, Comb..

[12]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[13]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[14]  Michael A. Henning,et al.  Upper Total Domination , 2013 .

[15]  Béla Bollobás,et al.  Graph-theoretic parameters concerning domination, independence, and irredundance , 1979, J. Graph Theory.

[16]  Michael A. Henning,et al.  A new lower bound for the total domination number in graphs proving a Graffiti.pc Conjecture , 2014, Discret. Appl. Math..

[17]  Michael A. Henning,et al.  Total Domination in Graphs with Diameter 2 , 2013, J. Graph Theory.

[18]  Michael A. Henning,et al.  Graphs with large total domination number , 2000, J. Graph Theory.

[19]  Michael A. Henning,et al.  Trees with large neighborhood total domination number , 2015, Discret. Appl. Math..

[20]  Stephen T. Hedetniemi,et al.  Total domination in graphs , 1980, Networks.