Low-Dimensional Materials and State-of-the-Art Architectures for Infrared Photodetection

Infrared photodetectors are gaining remarkable interest due to their widespread civil and military applications. Low-dimensional materials such as quantum dots, nanowires, and two-dimensional nanolayers are extensively employed for detecting ultraviolet to infrared lights. Moreover, in conjunction with plasmonic nanostructures and plasmonic waveguides, they exhibit appealing performance for practical applications, including sub-wavelength photon confinement, high response time, and functionalities. In this review, we have discussed recent advances and challenges in the prospective infrared photodetectors fabricated by low-dimensional nanostructured materials. In general, this review systematically summarizes the state-of-the-art device architectures, major developments, and future trends in infrared photodetection.

[1]  Huili Grace Xing,et al.  Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. , 2007, Nano letters.

[2]  Shuchi Gupta,et al.  Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots. , 2013, Physical chemistry chemical physics : PCCP.

[3]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[4]  Hiroyuki Sakaki,et al.  Electron-phonon interaction and the so-called phonon bottleneck effect in semiconductor quantum dots , 1996 .

[5]  Min Xi,et al.  Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals. , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[6]  Xuezhe Yu,et al.  Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy. , 2017, Nano letters.

[7]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[8]  J. Kong,et al.  High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. , 2014, Nano letters (Print).

[9]  Gerhard Abstreiter,et al.  Enhanced luminescence properties of InAs-InAsP core-shell nanowires. , 2013, Nano letters.

[10]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[11]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[12]  Hong-Bo Sun,et al.  High numerical aperture microlens arrays of close packing , 2010 .

[13]  Philippe Guyot-Sionnest,et al.  Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. , 2014, ACS nano.

[14]  M. Silly,et al.  Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals. , 2018, ACS applied materials & interfaces.

[15]  N. J. Davis,et al.  Multiple exciton generation in quantum dot-based solar cells , 2017 .

[16]  Philippe Guyot-Sionnest,et al.  Optical properties of HgTe colloidal quantum dots , 2012, Nanotechnology.

[17]  Qidai Chen,et al.  Protein-based soft micro-optics fabricated by femtosecond laser direct writing , 2014, Light: Science & Applications.

[18]  Subhananda Chakrabarti,et al.  High-performance, long-wave (∼10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping , 2011 .

[19]  Weida Hu,et al.  Near‐Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology , 2016 .

[20]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[21]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[22]  Franck Lefèvre,et al.  Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics , 2009, Nature.

[23]  Chengkuo Lee,et al.  Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power. , 2017, ACS applied materials & interfaces.

[24]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[25]  Hugh Doyle,et al.  Luminescent optical detection of volatile electron deficient compounds by conjugated polymer nanofibers. , 2015, Analytical chemistry.

[26]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[27]  Peng Zhou,et al.  Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. , 2016, ACS nano.

[28]  Philippe Guyot-Sionnest,et al.  Advances in HgTe Colloidal Quantum Dots for Infrared Detectors , 2017, Journal of Electronic Materials.

[29]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[30]  Ming Lin,et al.  High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids , 2012, Advanced materials.

[31]  D. McComb,et al.  Optical control of internal electric fields in band gap-graded InGaN nanowires. , 2015, Nano letters.

[32]  A. V. Dvurechenskii,et al.  Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si , 2017 .

[33]  Wei Li,et al.  Metamaterial perfect absorber based hot electron photodetection. , 2014, Nano letters.

[34]  Sae Woo Nam,et al.  Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. , 2018, Optics express.

[35]  S. B. Krupanidhi,et al.  Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons , 2011, Advanced materials.

[36]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[37]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[38]  Liang Gao,et al.  Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors , 2014 .

[39]  Francesco Tafuri,et al.  High-temperature superconducting nanowires for photon detection , 2015 .

[40]  Galileo Sarasqueta,et al.  Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors , 2010 .

[41]  Tianyou Zhai,et al.  One‐Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics , 2013, Advanced materials.

[42]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[43]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[44]  Sir B. Rafol,et al.  Tuning and tailoring of broadband quantum-well infrared photodetector responsivity spectrum , 2005 .

[45]  V. Mitin,et al.  Photon Number-Resolved Detection With Sequentially Connected Nanowires , 2007, IEEE Transactions on Applied Superconductivity.

[46]  Ray R. LaPierre,et al.  A review of III–V nanowire infrared photodetectors and sensors , 2017 .

[47]  J. Faist,et al.  16.5μm quantum cascade detector using miniband transport , 2007 .

[48]  Xianfan Xu,et al.  Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared. , 2018, ACS nano.

[49]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[50]  Yadong Jiang,et al.  The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching , 2016, Nanoscale Research Letters.

[51]  Benoit Dubertret,et al.  Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz. , 2016, Nano letters.

[52]  A. Rogalski Infrared detectors: status and trends , 2003 .

[53]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[54]  Qiangfei Xia,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[55]  Chennupati Jagadish,et al.  Engineering the Photoresponse of InAs Nanowires. , 2017, ACS applied materials & interfaces.

[56]  V. Berger,et al.  High resistance narrow band quantum cascade photodetectors , 2005 .

[57]  Cheng Cheng,et al.  Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots , 2017 .

[58]  King Wai Chiu Lai,et al.  Detection of mid-infrared by HgTe colloidal quantum dots at room temperature , 2016, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).

[59]  Wei Lu,et al.  Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. , 2016, Nano letters.

[60]  Sae Woo Nam,et al.  All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. , 2017, Applied physics letters.

[61]  Tianyou Zhai,et al.  High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition , 2016 .

[62]  Hooman Mohseni,et al.  Plasmonic enhanced quantum well infrared photodetector with high detectivity , 2010 .

[63]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[64]  Noah D Bronstein,et al.  Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors , 2016 .

[65]  Chennupati Jagadish,et al.  III-V compound SC for optoelectronic devices , 2009 .

[66]  Robert J. Young,et al.  Room-Temperature Mid-Infrared Emission from Faceted InAsSb Multi Quantum Wells Embedded in InAs Nanowires. , 2018, Nano letters.

[67]  A. G. Unil Perera,et al.  Heterojunction plasmonic midinfrared detectors , 2011 .

[68]  F. Guinea,et al.  Substrate-limited electron dynamics in graphene , 2007, 0711.1303.

[69]  Jana Zaumseil,et al.  Epitaxial Growth of PbSe Quantum Dots on MoS2 Nanosheets and their Near‐Infrared Photoresponse , 2014 .

[70]  Li Lin,et al.  Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions. , 2013, Journal of the American Chemical Society.

[71]  Sang Jun Lee,et al.  A monolithically integrated plasmonic infrared quantum dot camera. , 2011, Nature communications.

[72]  Hong-Bo Sun,et al.  Customization of Protein Single Nanowires for Optical Biosensing. , 2015, Small.

[73]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[74]  Jianquan Yao,et al.  High performance PbSe colloidal quantum dot vertical field effect phototransistors , 2016, Nanotechnology.

[75]  A. Ouerghi,et al.  Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors , 2016, Scientific Reports.

[76]  Subhananda Chakrabarti,et al.  Multi-color tunneling quantum dot infrared photodetectors operating at room temperature , 2007 .

[77]  Jiwon Jeon,et al.  Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. , 2014, ACS nano.

[78]  S. Krishna,et al.  Photovoltaic quantum dot quantum cascade infrared photodetector , 2012 .

[79]  Sanjay Krishna,et al.  High responsivity, LWIR dots-in-a-well quantum dot infrared photodetectors , 2003 .

[80]  Kwang Seob Jeong,et al.  Mid-Infrared Intraband Transition of Metal Excess Colloidal Ag2Se Nanocrystals , 2018 .

[81]  Lin Kang,et al.  Design of efficient superconducting nanowire single photon detectors with high polarization sensitivity for polarimetric imaging , 2016 .

[82]  Chao Xie,et al.  Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene , 2017 .

[83]  Z. Yin,et al.  A universal, rapid method for clean transfer of nanostructures onto various substrates. , 2014, ACS nano.

[84]  Limin Tong,et al.  Light-emitting polymer single nanofibers via waveguiding excitation. , 2010, ACS nano.

[85]  Hong-Bo Sun,et al.  Protein-based Y-junction optical micro-splitters with environment-stimulus-actuated adjustments , 2016 .

[86]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[87]  Omer Salihoglu,et al.  “N” structure for type-II superlattice photodetectors , 2012 .

[88]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[89]  Gerasimos Konstantatos,et al.  MoS2–HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm , 2017, Advanced materials.

[90]  Hanne Kauko,et al.  Rectifying Single GaAsSb Nanowire Devices Based on Self-Induced Compositional Gradients. , 2015, Nano letters.

[91]  King Wai Chiu Lai,et al.  Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared , 2017 .

[92]  E. Diamanti,et al.  High-efficiency photon-number detection for quantum information processing , 2003, quant-ph/0308054.

[93]  Andrey Klots,et al.  Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2. , 2015, Nano letters.

[94]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[95]  Clifton G. Fonstad,et al.  Theory, fabrication and characterization of quantum well infrared photodetectors , 2000 .

[96]  Farhan Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[97]  Lukas Novotny,et al.  Optical near-field mapping with a superconducting nanowire detector , 2018, Applied Physics Letters.

[98]  Andrea Alu,et al.  Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit. , 2016, ACS nano.

[99]  A. Bismuto,et al.  Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector , 2010 .

[100]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[101]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[102]  Yu-Sheng Lai,et al.  Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths , 2014, Nature Communications.

[103]  Han Hu,et al.  Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. , 2013, ACS applied materials & interfaces.

[104]  A. Ferrari,et al.  Surface Plasmon Polariton Graphene Photodetectors. , 2015, Nano letters.

[105]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[106]  Zhiyong Fan,et al.  Single InAs nanowire room-temperature near-infrared photodetectors. , 2014, ACS nano.

[107]  Tianyou Zhai,et al.  Large‐Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors , 2016 .

[108]  J. Xiong,et al.  Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family , 2016, Advanced science.

[109]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[110]  S. Krishna,et al.  Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities , 2010, IEEE Journal of Quantum Electronics.

[111]  Andrey L Rogach,et al.  Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. , 2014, ACS nano.

[112]  F. Julien,et al.  GaN/AlGaN intersubband optoelectronic devices , 2009 .

[113]  Sanghun Jeon,et al.  Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory. , 2015, Nano letters.

[114]  Lin Kang,et al.  Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency , 2016, Scientific Reports.

[115]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[116]  S. Krishna,et al.  Electron barrier study of mid-wave infrared interband cascade photodetectors , 2013 .

[117]  G. Wicks,et al.  nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .

[118]  G. Goltsman,et al.  New Generation of Nanowire NbN Superconducting Single-Photon Detector for Mid-Infrared , 2011, IEEE Transactions on Applied Superconductivity.

[119]  Philippe Guyot-Sionnest,et al.  Colloidal quantum dots intraband photodetectors. , 2014, ACS nano.

[120]  L. Tong,et al.  Polymer single-nanowire optical sensors. , 2008, Nano letters.

[121]  Caiyun Chen,et al.  Broadband photodetectors based on graphene-Bi2Te3 heterostructure. , 2015, ACS Nano.

[122]  Sanjay Krishna,et al.  A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .

[123]  Mattias Beck,et al.  Quantum-cascade-laser structures as photodetectors , 2002 .

[124]  Fengqi Liu,et al.  Quantum dot quantum cascade infrared photodetector , 2014 .

[125]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[126]  Dong-Yol Yang,et al.  Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique , 2006 .

[127]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[128]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[129]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[130]  Jean-Jacques Delaunay,et al.  Spectrally Selective Photocapacitance Modulation in Plasmonic Nanochannels for Infrared Imaging. , 2016, Nano letters.

[131]  Ning Li,et al.  19 μm quantum cascade infrared photodetectors , 2013 .

[132]  Li Wang,et al.  Near‐Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction , 2014 .

[133]  Lars-Erik Wernersson,et al.  Low Leakage-Current InAsSb Nanowire Photodetectors on Silicon. , 2016, Nano letters.

[134]  Sajad Haq,et al.  Ultra-broadband light trapping using nanotextured decoupled graphene multilayers , 2016, Science Advances.

[135]  H. Sakata Optimally designed layer formation for wavelength-selective photodetectors based on grating-assisted coupling , 1996 .

[136]  Liang Li,et al.  Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors , 2018, Nano Research.

[137]  Zhiyong Fan,et al.  When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors. , 2016, Nano letters.

[138]  Dong Hee Shin,et al.  High photoresponsivity in an all-graphene p–n vertical junction photodetector , 2014, Nature Communications.

[139]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[140]  Yang Gao,et al.  Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation , 2012, Light: Science & Applications.

[141]  E. Mazur,et al.  Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation , 2004 .

[142]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[143]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[144]  Xing Li,et al.  Negative photoconductivity of InAs nanowires. , 2016, Physical chemistry chemical physics : PCCP.

[145]  Wei Zhang,et al.  InP-Based Quantum-Dot Infrared Photodetectors With High Quantum Efficiency and High-Temperature Imaging , 2008, IEEE Sensors Journal.

[146]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[147]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[148]  Shigehito Miki,et al.  Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors. , 2015, Nano letters.

[149]  Cory Hill,et al.  Quantum Dot Based Infrared Focal Plane Arrays , 2007, Proceedings of the IEEE.

[150]  Andrea Fiore,et al.  Photon-number-resolving superconducting nanowire detectors , 2015 .

[151]  Weida Hu,et al.  Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. , 2017, ACS nano.

[152]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[153]  Sae Woo Nam,et al.  Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science. , 2017, Accounts of chemical research.

[154]  Roberto Paiella,et al.  SiGe Nanomembrane Quantum-Well Infrared Photodetectors , 2016 .

[155]  G. Konstantatos,et al.  Colloidal Quantum Dot Photodetectors , 2013 .

[156]  Bertille Martinez,et al.  HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material , 2018 .

[157]  Wei Ren,et al.  Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm. , 2017, ACS nano.

[158]  Benoit Dubertret,et al.  Terahertz HgTe Nanocrystals: Beyond Confinement. , 2018, Journal of the American Chemical Society.