Explicitly correlated electrons in molecules.

Explicitly Correlated Electrons in Molecules Christof H€attig, Wim Klopper,* Andreas K€ohn, and David P. Tew Lehrstuhl f€ur Theoretische Chemie, Ruhr-Universit€at Bochum, D-44780 Bochum, Germany Abteilung f€ur Theoretische Chemie, Institut f€ur Physikalische Chemie, Karlsruher Institut f€ur Technologie, KIT-Campus S€ud, Postfach 6980, D-76049 Karlsruhe, Germany Institut f€ur Physikalische Chemie, Johannes Gutenberg-Universit€at Mainz, D-55099 Mainz, Germany School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

[1]  Rigoberto Hernandez,et al.  On the accuracy limits of orbital expansion methods: Explicit effects of k-functions on atomic and molecular energies , 2003 .

[2]  H. Kleindienst,et al.  NONRELATIVISTIC ENERGIES FOR THE BE ATOM : DOUBLE-LINKED HYLLERAAS-CI CALCULATION , 1998 .

[3]  W. Lester,et al.  Some Aspects of the Coulomb Hole of the Ground State of H3 , 1966 .

[4]  Theresa L. Windus,et al.  Enabling new capabilities and insights from quantum chemistry by using component architectures , 2006 .

[5]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[6]  S. Hirata,et al.  Communications: Explicitly correlated second-order Møller-Plesset perturbation method for extended systems. , 2010, The Journal of chemical physics.

[7]  Gordon W. F. Drake,et al.  Ground-state energies for helium, H - , and Ps - , 2002 .

[8]  W. Klopper,et al.  Analytical nuclear gradients of the explicitly correlated Møller–Plesset second-order energy , 2010 .

[9]  H. Monkhorst,et al.  Obtaining microhartree accuracy for two‐electron systems with random‐tempered Gaussian‐type geminals , 1990 .

[10]  David Feller,et al.  On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. , 2011, The Journal of chemical physics.

[11]  K. Jankowski,et al.  Towards benchmark second-order correlation energies for large atoms. II. Angular extrapolation problems. , 2006, The Journal of chemical physics.

[12]  L. Wolniewicz,et al.  Potential-Energy Curves for the X1Sg+, b3Su+, and C1Pu States of the Hydrogen Molecule , 1965 .

[13]  R. Needs,et al.  Continuum variational and diffusion quantum Monte Carlo calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  Toichiro Kinoshita,et al.  GROUND STATE OF THE HELIUM ATOM , 1957 .

[15]  Joel M Bowman,et al.  Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface. , 2008, The Journal of chemical physics.

[16]  Trygve Helgaker,et al.  Electron correlation: The many‐body problem at the heart of chemistry , 2007, J. Comput. Chem..

[17]  L. Adamowicz,et al.  Exponentially and pre-exponentially correlated Gaussians for atomic quantum calculations. , 2011, Journal of Chemical Physics.

[18]  P. Taylor,et al.  Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory. , 2006, The Journal of chemical physics.

[19]  R. Gdanitz,et al.  Accurately solving the electronic Schrodinger equation of small atoms and molecules using explicitly correlated (r12-)MR-CI. VIII. Valence excited states of methylene (CH2). , 2005, The Journal of chemical physics.

[20]  Florian Weigend,et al.  Hartree–Fock exchange fitting basis sets for H to Rn † , 2008, J. Comput. Chem..

[21]  Zong-Chao Yan Computational methods for three-electron atomic systems in Hylleraas coordinates: II. QED terms and , 1997 .

[22]  L. Szász,et al.  ATOMIC MANY-BODY PROBLEM. III. THE CALCULATION OF HYLLERAAS-TYPE CORRELATED WAVE FUNCTIONS FOR THE BERYLLIUM ATOM. , 1967 .

[23]  T. Helgaker,et al.  Second-order Møller–Plesset perturbation theory with terms linear in the interelectronic coordinates and exact evaluation of three-electron integrals , 2002 .

[24]  Wojciech Cencek,et al.  Ultra‐high accuracy calculations for hydrogen molecule and helium dimer , 2008 .

[25]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory , 1996 .

[26]  J Grant Hill,et al.  Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: the atoms B-Ne and Al-Ar. , 2010, The Journal of chemical physics.

[27]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[28]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[29]  P. Löwdin Expansion Theorems for the Total Wave Function and Extended Hartree-Fock Schemes , 1960 .

[30]  K. Singer,et al.  The use of Gaussian (exponential quadratic) wave functions in molecular problems - I. General formulae for the evaluation of integrals , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  W. Klopper,et al.  Explicitly correlated calculation of the second-order Møller-Plesset correlation energies of Zn2+ and Zn , 2005 .

[32]  Frederick W. King,et al.  CONVERGENCE ACCELERATOR APPROACH FOR THE HIGH-PRECISION EVALUATION OF THREE-ELECTRON CORRELATED INTEGRALS , 1998 .

[33]  L. Adamowicz,et al.  Molecular electric polarizabilities. CI and explicitly correlated electric-field-variant functions. Calculation of the polarizability of H2 , 1979 .

[34]  Some Theorems Concerning Symmetry, Angular Momentum, and Completeness of Atomic Geminals with Explicit r12 Dependence , 1967 .

[35]  Hongjun Luo Variational transcorrelated method. , 2010, The Journal of chemical physics.

[36]  D. Tew,et al.  Automated incremental scheme for explicitly correlated methods. , 2010, The Journal of chemical physics.

[37]  J. Noga,et al.  Anharmonic vibrational analysis of water with traditional and explicitly correlated coupled cluster methods. , 2010, The Journal of chemical physics.

[38]  Wim Klopper,et al.  Equilibrium inversion barrier of NH3 from extrapolated coupled‐cluster pair energies , 2001, J. Comput. Chem..

[39]  J Grant Hill,et al.  Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core-valence basis sets for Li, Be, Na, and Mg. , 2010, Physical chemistry chemical physics : PCCP.

[40]  J. B. Anderson,et al.  Monte Carlo methods in electronic structures for large systems. , 2000, Annual review of physical chemistry.

[41]  A. Frolov Highly accurate calculation of the auxiliary functions of the fourth order and five-body integrals , 2004 .

[42]  D. Tew,et al.  A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2. , 2006, The Journal of chemical physics.

[43]  Morgan,et al.  Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[44]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[45]  H. James,et al.  Improved Calculation of Ground State of H 2 , 1933 .

[46]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[47]  Wim Klopper,et al.  Gaussian basis sets and the nuclear cusp problem , 1986 .

[48]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[49]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. II. Ground-state energies of first-row atoms and positive atomic ions , 1998 .

[50]  P. Jørgensen,et al.  The hyperpolarizability of the Ne atom in the approximate coupled cluster triples model CC3 , 2004 .

[51]  C. C. J. Roothaan,et al.  Correlated Orbitals for the Ground State of Heliumlike Systems , 1960 .

[52]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[53]  E. Clementi,et al.  Gaussian functions in Hylleraas‐configuration interaction calculations. V. An accurate abinitio H+3 potential‐energy surface , 1990 .

[54]  Edward F. Valeev,et al.  Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. , 2008, The Journal of chemical physics.

[55]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[56]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[57]  D. Tew Second order coalescence conditions of molecular wave functions. , 2008, The Journal of chemical physics.

[58]  W. D. Allen,et al.  Toward subchemical accuracy in computational thermochemistry: focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. , 2004, The Journal of chemical physics.

[59]  E. Burke Variational Calculation of the Ground State of the Lithium Atom , 1963 .

[60]  J. Sims,et al.  Hylleraas-configuration-interaction study of the 1 S ground state of neutral beryllium , 2011 .

[61]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. I. General theory and test results , 1993 .

[62]  K. Pitzer,et al.  Atomic Integrals Containing Functions of r12 and r13 , 1964 .

[63]  C. Schwartz GROUND STATE OF THE HELIUM ATOM , 1962 .

[64]  L. Adamowicz,et al.  Isotope shift in the electron affinity of lithium. , 2009, The Journal of chemical physics.

[65]  W. Klopper,et al.  Nucleobase-fluorobenzene interactions: hydrogen bonding wins over pi stacking. , 2007, Angewandte Chemie.

[66]  D. Bakowies Accurate extrapolation of electron correlation energies from small basis sets. , 2007, The Journal of chemical physics.

[67]  T. H. Gronwall The Helium Wave Equation , 1937 .

[68]  Laura K McKemmish,et al.  The nature of electron correlation in a dissociating bond. , 2011, The Journal of chemical physics.

[69]  Jacek Karwowski,et al.  Relativistic Hylleraas configuration-interaction method projected into positive-energy space , 2008 .

[70]  Hans-Joachim Werner,et al.  Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. , 2009, The Journal of chemical physics.

[71]  Bruno Klahn,et al.  The convergence of the Rayleigh-Ritz Method in quantum chemistry , 1977 .

[72]  A. Preiskorn,et al.  Many‐Electron, multicenter integrals in superposition of correlated configurations method. I. one‐ and two‐electron integrals , 1985 .

[73]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[74]  G. Jansen,et al.  Effects of counterpoise correction and basis set extrapolation on the MP2 geometries of hydrogen bonded dimers of ammonia, water, and hydrogen fluoride. , 2011, Physical chemistry chemical physics : PCCP.

[75]  J. Rychlewski,et al.  Atomic and Molecular Properties Using Explicitly Correlated Functions , 2003 .

[76]  D. Tew,et al.  Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12). , 2010, The Journal of chemical physics.

[77]  D. Tew,et al.  Comment on Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets by D. P. Tew, W. Klopper, C. Neiss and C. Hättig, Phys. Chem. Chem. Phys., 2007, 9, 1921 [erratum] , 2008 .

[78]  W. Klopper A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. , 2004, The Journal of chemical physics.

[79]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[80]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[81]  Edward F. Valeev,et al.  Explicitly correlated combined coupled-cluster and perturbation methods. , 2009, The Journal of chemical physics.

[82]  J. Tennyson,et al.  A full nine-dimensional potential-energy surface for hydrogen molecule-water collisions. , 2005, The Journal of chemical physics.

[83]  D. Tew,et al.  The weak orthogonality functional in explicitly correlated pair theories. , 2007, The Journal of chemical physics.

[84]  Jae Shin Lee,et al.  Basis set and correlation dependent extrapolation of correlation energy , 2003 .

[85]  L. Adamowicz,et al.  Non-Born-Oppenheimer calculations of the BH molecule. , 2009, The Journal of chemical physics.

[86]  S. Ten-no,et al.  Communications: Explicitly correlated equation-of-motion coupled cluster method for ionized states. , 2010, The Journal of chemical physics.

[87]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[88]  J. Noga,et al.  The accuracy of atomization energies from explicitly correlated coupled-cluster calculations , 2001 .

[89]  W. Kutzelnigg,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .

[90]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. I. Atomic systems , 1986 .

[91]  D. Tew,et al.  Open-shell explicitly correlated F12 methods , 2010 .

[92]  Edward F. Valeev,et al.  Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2. , 2010, The Journal of chemical physics.

[93]  A. Thakkar,et al.  Ground-state energies for the helium isoelectronic series. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[94]  H. Schwartz FURTHER RESULTS CONCERNING HALF-INTEGRAL HYLLERAAS EXPANSIONS , 1963 .

[95]  J. Noga,et al.  On the one-particle basis set relaxation in R12 based theories , 2009 .

[96]  H. Kleindienst,et al.  An efficient basis selection procedure for the reduction of the dimension in large Hylleraas-CI calculations , 1992 .

[97]  Kirk A. Peterson,et al.  Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets , 2009 .

[98]  J. Karwowski,et al.  Hylleraas-CI Approach to Diraccoulomb Equation , 2003 .

[99]  J. D. Morgan,et al.  Convergence properties of Fock's expansion for S-state eigenfunctions of the helium atom , 1986 .

[100]  Pavel Rosmus,et al.  PNO–CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first‐row and second‐row diatomic hydrides , 1975 .

[101]  P. Jolly Improved minimization for the Hylleraas six-parameter wave function , 1979 .

[102]  Frederick R Manby,et al.  Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. , 2009, The Journal of chemical physics.

[103]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. I. SHELLS, ELECTRON PAIRS VS MANY-ELECTRON CORRELATIONS , 1962 .

[104]  Frederick R. Manby,et al.  Explicitly correlated coupled cluster methods with pair-specific geminals , 2011 .

[105]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[106]  Krzysztof Pachucki,et al.  Ground state of Li and Be+ using explicitly correlated functions , 2009, 0909.5542.

[107]  A. Varandas Extrapolation to the complete basis set limit without counterpoise. The pair potential of helium revisited. , 2010, The journal of physical chemistry. A.

[108]  W. Kutzelnigg,et al.  Configuration interaction calculations with terms linear in the interelectronic coordinate for the ground state of H+3. A benchmark study , 1993 .

[109]  Alan Aspuru-Guzik,et al.  Quantum Monte Carlo for electronic excitations of free-base porphyrin. , 2004, The Journal of chemical physics.

[110]  A. Köhn A modified ansatz for explicitly correlated coupled-cluster wave functions that is suitable for response theory. , 2009, The Journal of chemical physics.

[111]  J. H. Bartlett Helium Wave Equation , 1937 .

[112]  D. Bakowies Extrapolation of electron correlation energies to finite and complete basis set targets. , 2007, The Journal of chemical physics.

[113]  W. Kutzelnigg,et al.  Hund's rules , 1996 .

[114]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[115]  K. Szalewicz,et al.  Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. , 2007, The Journal of chemical physics.

[116]  W. Klopper,et al.  Unexpected Trimerization of Pyrazine in the Coordination Sphere of Low-Valent Titanocene Fragments. , 2009, Journal of Chemical Theory and Computation.

[117]  Static electric properties of LiH: explicitly correlated coupled cluster calculations , 1998 .

[118]  Hill,et al.  Analytic evaluation of three-electron integrals. , 1987, Physical review. A, General physics.

[119]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[120]  J. Noga,et al.  Basis set limit value for the static dipole polarizability of beryllium , 1997 .

[121]  J. Pople,et al.  Correlation energies for AH n molecules and cations , 1975 .

[122]  T. Kinoshita GROUND STATE OF THE HELIUM ATOM. II , 1959 .

[123]  P. Botschwina,et al.  Explicitly correlated coupled cluster calculations for the propargyl cation (H2C3H+) and related species. , 2011, Physical chemistry chemical physics : PCCP.

[124]  T. Dunning,et al.  A Road Map for the Calculation of Molecular Binding Energies , 2000 .

[125]  J. Noga,et al.  Inversion levels of H3O+ as a probe for the basis set convergence in traditional and explicitly correlated coupled-cluster calculations , 2004 .

[126]  H. Kjaergaard,et al.  XH-stretching overtone transitions calculated using explicitly correlated coupled cluster methods. , 2010, The Journal of chemical physics.

[127]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[128]  R. Jaquet,et al.  Rovibrational energy levels of H3(+) with energies above the barrier to linearity. , 2009, The Journal of chemical physics.

[129]  M. Gutowski,et al.  Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion. , 2007, The Journal of chemical physics.

[130]  P. Botschwina,et al.  Calculated photoelectron spectra of isotopomers of the propargyl radical (H2C3H): An explicitly correlated coupled cluster study , 2010 .

[131]  Werner Kutzelnigg Friedrich Hund and Chemistry , 1996 .

[132]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[133]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[134]  K. Szalewicz,et al.  High-accuracy Compton profile of molecular hydrogen from explicitly correlated Gaussian wave function , 1979 .

[135]  L. Adamowicz,et al.  An effective method for generating nonadiabatic many-body wave function using explicitly correlated Gaussian-type functions , 1991 .

[136]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[137]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[138]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[139]  H. Kleindienst,et al.  Accurate upper and lower bounds for some excited S states of the He atom , 1994 .

[140]  J. C. Slater Central Fields and Rydberg Formulas in Wave Mechanics , 1928 .

[141]  Matthew L. Leininger,et al.  Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses , 2002 .

[142]  Toru Shiozaki,et al.  Communication: Second-order multireference perturbation theory with explicit correlation: CASPT2-F12. , 2010, The Journal of chemical physics.

[143]  Hans-Joachim Werner,et al.  Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. , 2009, The Journal of chemical physics.

[144]  J. Hirschfelder Removal of electron-electron poles from many electron hamiltonians , 1963 .

[145]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[146]  M. Schütz,et al.  Ab Initio Calculations of the Binding Energies of Small (H2O)n Clusters (n = 1…4) , 1995 .

[147]  Eric Schwegler,et al.  Application of explicitly correlated Gaussian functions for calculations of the ground state of the beryllium atom , 1993, J. Comput. Chem..

[148]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[149]  Y. K. Ho,et al.  Evaluation of Some Integrals Required in Low-Energy Electron or Positron-Atom Scattering , 1975 .

[150]  Konrad Patkowski,et al.  Argon pair potential at basis set and excitation limits. , 2010, The Journal of chemical physics.

[151]  J. Tennyson,et al.  An accurate, global, ab initio potential energy surface for the H+ 3 molecule , 2000 .

[152]  Edward F. Valeev,et al.  Scalar relativistic explicitly correlated R12 methods. , 2010, The Journal of chemical physics.

[153]  Victor V. Albert,et al.  Few-parameter exponentially correlated wavefunctions for the ground state of lithium , 2009 .

[154]  N. Handy,et al.  On the optimisation of exponents ofd andf polarisation functions for first row atoms , 1992 .

[155]  J. D. Morgan,et al.  Rates of convergence of variational calculations and of expectation values , 1984 .

[156]  M. Hanauer,et al.  Response properties with explicitly correlated coupled-cluster methods using a Slater-type correlation factor and cusp conditions. , 2009, The Journal of chemical physics.

[157]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. III. Coupled cluster treatment for He, Be, H2, and LiH , 1984 .

[158]  E. Clementi,et al.  Gaussian functions in hylleraas‐CI calculations. I. Ground state energies for H2, HeH+, and H+3 , 1988 .

[159]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[160]  T. Helgaker,et al.  Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12exp(−γr122) , 2002 .

[161]  R. Bartlett,et al.  Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD+T(CCSD), CCSD(T),and QCISD(T) , 1992 .

[162]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[163]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. II. Perturbation treatment through third order for He, Be, H2, and LiH , 1983 .

[164]  K. Szalewicz,et al.  Gaussian Geminals in Coupled Cluster and Many-Body Perturbation Theories , 2003 .

[165]  Ajit J. Thakkar,et al.  Compact and accurate integral-transform wave functions. I. The 1 /sup 1/S state of the helium-like ions from H/sup -/ through Mg/sup 10 +/ , 1977 .

[166]  Á. Nagy,et al.  Ground- and excited-state cusp conditions for the electron density , 2001 .

[167]  H. Nakatsuji,et al.  Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function. , 2007, Physical review letters.

[168]  J. Noga,et al.  An explicitly correlated coupled cluster calculation of the helium–helium interatomic potential , 1995 .

[169]  John M Simmie,et al.  Accurate benchmark calculation of the reaction barrier height for hydrogen abstraction by the hydroperoxyl radical from methane. Implications for C(n)H(2n+2) where n = 2 --> 4. , 2008, The journal of physical chemistry. A.

[170]  Vladimir I. Korobov,et al.  Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies , 2000 .

[171]  J. D. Morgan,et al.  Variational calculations on the helium isoelectronic sequence , 1984 .

[172]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[173]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[174]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. , 2009, The journal of physical chemistry. A.

[175]  L. Adamowicz,et al.  Lowest excitation energy of 9Be. , 2007, Physical review letters.

[176]  W. D. Allen,et al.  The barrier to linearity of water , 1999 .

[177]  J. Noga,et al.  Multireference R12 Coupled Cluster Theory , 2010 .

[178]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[179]  James S. Sims,et al.  Combined Configuration-Interaction—Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom , 1971 .

[180]  Edward F. Valeev,et al.  Analysis of the errors in explicitly correlated electronic structure theory. , 2005, Physical chemistry chemical physics : PCCP.

[181]  L. Adamowicz,et al.  Analytical energy gradient in variational calculations of the two lowest P3 states of the carbon atom with explicitly correlated Gaussian basis functions , 2010 .

[182]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[183]  F. Harris ANALYTIC EVALUATION OF THREE-ELECTRON ATOMIC INTEGRALS WITH SLATER WAVE FUNCTIONS , 1997 .

[184]  Impact of Electron-Electron Cusp on Configuration Interaction Energies , 2001, cond-mat/0102536.

[185]  W. Klopper,et al.  Second-order electron-correlation and self-consistent spin-orbit treatment of heavy molecules at the basis-set limit. , 2010, The Journal of chemical physics.

[186]  K. Singer,et al.  Gaussian One‐ and Two‐Electron Wavefunctions , 1965 .

[187]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[188]  M. Quack,et al.  HF dimer: Empirically refined analytical potential energy and dipole hypersurfaces from ab initio calculations , 1998 .

[189]  Ludwik Adamowicz,et al.  Five lowest S1 states of the Be atom calculated with a finite-nuclear-mass approach and with relativistic and QED corrections , 2009 .

[190]  Robert J. Gdanitz,et al.  A formulation of multiple-referenceCIwith terms linear in the interelectronic distances. II. An alternative ansatz: FORMULATION OFr12-MR-CI , 1995 .

[191]  A survey of Gaussian two-electron functions , 1964 .

[192]  S. Huzinaga,et al.  Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .

[193]  J. Grossman,et al.  Linear-scaling quantum Monte Carlo calculations. , 2001, Physical review letters.

[194]  S. F. Boys,et al.  The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[195]  Christof Hättig,et al.  Explicitly Correlated Coupled-Cluster Theory , 2010 .

[196]  Hans Peter Lüthi,et al.  TOWARDS THE ACCURATE COMPUTATION OF PROPERTIES OF TRANSITION METAL COMPOUNDS : THE BINDING ENERGY OF FERROCENE , 1996 .

[197]  D. Tew,et al.  Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne , 2010 .

[198]  L. Adamowicz,et al.  Simultaneous optimization of molecular geometry and the wave function in a basis of Singer's n-electron explicitly correlated Gaussians , 2001 .

[199]  N. Handy,et al.  Hylleraas-type wavefunction for lithium hydride , 1977 .

[200]  John C. Slater,et al.  Note on Hartree's Method , 1930 .

[201]  R. Porter,et al.  Correlated wavefunctions, energies, and one‐electron radial densities for S states of the He atom , 1974 .

[202]  K. Pachucki Born-Oppenheimer potential for HeH + , 2010, 1007.0322.

[203]  W. Klopper,et al.  Perspective on “Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium” , 2000 .

[204]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[205]  J. Komasa,et al.  Relativistic and QED corrections for the beryllium atom. , 2004, Physical review letters.

[206]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[207]  H. James,et al.  A Correction and Addition to the Discussion of the Ground State of H2 , 1935 .

[208]  C. David Sherrill,et al.  High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers , 2006 .

[209]  M. Molski,et al.  Convergence of experiment and theory on the pure vibrational spectrum of HeH(+). , 2006, Physical review letters.

[210]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[211]  Antonio Rizzo,et al.  Selected topics in ab initio computational chemistry in both very small and very large chemical systems , 1991 .

[212]  Jae Shin Lee,et al.  Basis set convergence of correlated calculations on He, H2, and He2 , 2000 .

[213]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. I. Second‐order perturbation treatment for He, Be, H2, and LiH , 1983 .

[214]  Edward F. Valeev Computation of precise two-electron correlation energies with imprecise Hartree–Fock orbitals , 2006 .

[215]  W. Woźnicki,et al.  Superposition of correlated configurations method. The ground state of H+3 , 1982 .

[216]  W. Klopper,et al.  Analytical nuclear gradients for the MP2-R12 method , 2007 .

[217]  J. Almlöf,et al.  Towards the one‐particle basis set limit of second‐order correlation energies: MP2‐R12 calculations on small Ben and Mgn clusters (n=1–4) , 1993 .

[218]  Comments on configuration interaction combined with a correlation factor for two-electron atoms , 1971 .

[219]  H. F. King,et al.  Gaussian Geminals for Electron Pair Correlation , 1970 .

[220]  R. T. Pack,et al.  Cusp Conditions for Molecular Wavefunctions , 1966 .

[221]  King,et al.  Calculations on the 2S ground state of the lithium atom. , 1986, Physical review. A, General physics.

[222]  H. James,et al.  On the Ground State of Lithium , 1936 .

[223]  L. Wolniewicz,et al.  Accurate Adiabatic Treatment of the Ground State of the Hydrogen Molecule , 1964 .

[224]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[225]  Sebastian Höfener,et al.  Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements. , 2008, Physical chemistry chemical physics : PCCP.

[226]  W. Klopper,et al.  Similarity-Transformed Hamiltonians by Means of Gaussian-Damped Interelectronic Distances , 2003 .

[227]  A. Preiskorn,et al.  Variational calculations for the ground state of H3 , 1984 .

[228]  J. Rychlewski On the use of explicitly correlated functions in variational computations for small molecules , 1994 .

[229]  K. Szalewicz,et al.  On the multipole structure of exchange dispersion energy in the interaction of two helium atoms , 1977 .

[230]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI: the ground state potential energy curve of N2 , 1998 .

[231]  Seiichiro Ten-no,et al.  New implementation of second-order Møller-Plesset perturbation theory with an analytic Slater-type geminal. , 2007, The Journal of chemical physics.

[232]  T. Crawford,et al.  The electron cusp condition and the virial ratio as indicators of basis set quality , 2003 .

[233]  Davidson,et al.  Ground-state correlation energies for two- to ten-electron atomic ions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[234]  R. Bartlett,et al.  Elimination of Coulombic infinities through transformation of the Hamiltonian , 1998 .

[235]  Á. Nagy,et al.  Ground-and excited-state cusp conditions for the pair density , 2010 .

[236]  Adrian J Mulholland,et al.  High-accuracy computation of reaction barriers in enzymes. , 2006, Angewandte Chemie.

[237]  G. A. Petersson,et al.  MP2/CBS atomic and molecular benchmarks for H through Ar. , 2010, The Journal of chemical physics.

[238]  K. Vogiatzis,et al.  Interference-corrected explicitly-correlated second-order perturbation theory , 2011 .

[239]  Stanisl,et al.  Second‐order correlation energy for H2O using explicitly correlated Gaussian geminals , 1995 .

[240]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[241]  D. Tew,et al.  Low energy hydrogenation products of extended pi systems CnH2x: a density functional theory search strategy, benchmarked against CCSD(T), and applied to C60. , 2008, The Journal of chemical physics.

[242]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[243]  M. Olzmann,et al.  Accurate computational determination of the binding energy of the SO3 x H2O complex. , 2006, The Journal of chemical physics.

[244]  W. Kutzelnigg,et al.  Potential energy surface of the H+3 ground state in the neighborhood of the minimum with microhartree accuracy and vibrational frequencies derived from it , 1994 .

[245]  Y. Öhrn,et al.  On the Calculation of Some Atomic Integrals Containing Functions of r12, r13, and r23 , 1963 .

[246]  Edward F. Valeev,et al.  Universal perturbative explicitly correlated basis set incompleteness correction. , 2009, The Journal of chemical physics.

[247]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[248]  Hiroshi Nakatsuji,et al.  Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method. , 2008, Physical chemistry chemical physics : PCCP.

[249]  G. W. F. Drake,et al.  High Precision Theory of Atomic Helium , 1999 .

[250]  Wilfried Meyer,et al.  PNO-CI and CEPA studies of electron correlation effects , 1974 .

[251]  H. Monkhorst,et al.  Accurate Hartree–Fock wave functions without exponent optimization , 1984 .

[252]  Edward F. Valeev,et al.  Evaluation of two-electron integrals for explicit r12 theories , 2000 .

[253]  L. Adamowicz,et al.  Implementation of analytical first derivatives for evaluation of the many‐body nonadiabatic wave function with explicitly correlated Gaussian functions , 1992 .

[254]  P. Geerlings,et al.  Electron affinities of the first- and second-row atoms: Benchmark ab initio and density-functional calculations , 1999, physics/9902026.

[255]  R. D. Poshusta,et al.  Implementation of gradient formulas for correlated gaussians: He, ∞He, Ps2, 9Be, and ∞Be test results , 1997 .

[256]  Walter Thiel,et al.  Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. , 2008, The Journal of chemical physics.

[257]  M. Puchalski,et al.  Ground-state wave function and energy of the lithium atom (7 pages) , 2006, physics/0601213.

[258]  K. Szalewicz,et al.  New effective strategy of generating Gaussian‐type geminal basis sets for correlation energy calculations , 1994 .

[259]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[260]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction with multiple reference functions: avoided crossings and conical intersections. , 2011, The Journal of chemical physics.

[261]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[262]  Charles Schwartz,et al.  Experiment and Theory in Computations of the He Atom Ground State , 2002, physics/0208004.

[263]  H. F. King,et al.  Electron Correlation in Closed Shell Systems. I. Perturbation Theory Using Gaussian‐Type Geminals , 1972 .

[264]  Jeremiah J. Wilke,et al.  The subtleties of explicitly correlated Z-averaged perturbation theory: choosing an R12 method for high-spin open-shell molecules. , 2009, The Journal of chemical physics.

[265]  Evaluation of two-electron integrals including the factors r12kexp(−γr212) over Cartesian Gaussian functions , 2004 .

[266]  L. Adamowicz,et al.  Perturbation calculation of molecular correlation energy using Gaussian-type geminals. Second-order pair energies of LiH and BH , 1978 .

[267]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. III. Coupled pair calculations on lithium hydride and beryllium , 1988 .

[268]  J. Noga,et al.  Explicitly correlated coupled cluster F12 theory with single and double excitations. , 2008, The Journal of chemical physics.

[269]  F. Harris Recurrence formulas for fully exponentially correlated four-body wave functions , 2009, 0901.3942.

[270]  W. Hackbusch,et al.  Quantum Monte Carlo study of the transcorrelated method for correlation factors , 2010 .

[271]  Andreas Glöss,et al.  Explicitly correlated second-order perturbation theory calculations on molecules containing heavy main-group elements , 2008 .

[272]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[273]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[274]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[275]  M. Quack,et al.  A new ab initio based six-dimensional semi-empirical pair interaction potential for HF , 1996 .

[276]  Trygve Helgaker,et al.  Basis-set convergence of the molecular electric dipole moment , 1999 .

[277]  Remiddi Analytic value of the atomic three-electron correlation integral with Slater wave functions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[278]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[279]  T. Martínez,et al.  Variational geminal-augmented multireference self-consistent field theory: two-electron systems. , 2010, The Journal of chemical physics.

[280]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[281]  Wojciech Cencek,et al.  Accurate relativistic energies of one‐ and two‐electron systems using Gaussian wave functions , 1996 .

[282]  G. E. Brown,et al.  On the interaction of two electrons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[283]  James B. Anderson,et al.  Quantum chemistry by random walk. H 2P, H+3D3h1A′1, H23Σ+u, H41Σ+g, Be 1S , 1976 .

[284]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[285]  D. Clary Variational calculations on many-electron diatomic molecules using Hylleraas-type wavefunctions , 1977 .

[286]  R. D. Poshusta Nonadiabatic singer polymal wave functions for three‐particle systems , 1983 .

[287]  Hongjun Luo Complete optimisation of multi-configuration Jastrow wave functions by variational transcorrelated method. , 2011, The Journal of chemical physics.

[288]  J. Komasa Dipole and quadrupole polarizabilities and shielding factors of beryllium from exponentially correlated Gaussian functions , 2001 .

[289]  L. Adamowicz,et al.  High-accuracy calculations of the ground, 1 1A1', and the 2 1A1', 2 3A1', and 1 1E' excited states of H3+. , 2009, The Journal of chemical physics.

[290]  H. Kleindienst,et al.  Hylleraas–CI with linked correlation terms , 1993 .

[291]  C. Hättig,et al.  Highly accurate CCSD(R12) and CCSD(F12) optical response properties using standard triple-zeta basis sets. , 2009, The Journal of chemical physics.

[292]  Jacek Komasa,et al.  Theoretical Determination of the Dissociation Energy of Molecular Hydrogen. , 2009, Journal of chemical theory and computation.

[293]  Peter T. A. Galek,et al.  Hartree–Fock orbitals which obey the nuclear cusp condition , 2005 .

[294]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[295]  James S Sims,et al.  High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule. , 2006, The Journal of chemical physics.

[296]  W. Klopper,et al.  Extensions of r12 corrections to CC2-R12 for excited states. , 2006, The Journal of chemical physics.

[297]  Edward F. Valeev,et al.  Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. , 2004, The Journal of chemical physics.

[298]  K. Szalewicz,et al.  Infinite‐order functional for nonlinear parameters optimization in explicitly correlated coupled cluster theory , 2009 .

[299]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[300]  R. Sack,et al.  Ground State of Systems of Three Particles with Coulomb Interaction , 1960 .

[301]  J. Sims,et al.  Hylleraas-configuration-interaction study of the 2 2 S ground state of neutral lithium and the first five excited 2 S states , 2009 .

[302]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[303]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[304]  A. Köhn Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations. , 2010, The Journal of chemical physics.

[305]  D. Tew,et al.  Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. , 2010, The Journal of chemical physics.

[306]  J. R. Flores New benchmarks for the second-order correlation energies of Ne and Ar through the finite element MP2 method† , 2008 .

[307]  R. Metzger,et al.  Piecewise polynomial configuration interaction natural orbital study of 1 s2 helium , 1979 .

[308]  Christof Hättig,et al.  The MP2‐F12 method in the TURBOMOLE program package , 2011, J. Comput. Chem..

[309]  J. Noga,et al.  Explicitly correlated R12 coupled cluster calculations for open shell systems , 2000 .

[310]  J. F. Perkins Atomic Integrals Containing r23λ r31μ r12v , 1968 .

[311]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. II. Ground state of the helium molecular ion He+2 , 1995 .

[312]  Wim Klopper,et al.  Computation of some new two-electron Gaussian integrals , 1992 .

[313]  J. Noga,et al.  Static electrical response properties of F−, Ne, and HF using explicitly correlated R12 coupled cluster approach , 2001 .

[314]  J. Noga,et al.  High excitations in coupled-cluster series: vibrational energy levels of ammonia , 2004 .

[315]  L. Adamowicz,et al.  Accurate one-dimensional potential energy curve of the linear (H2)2 cluster. , 2010, The Journal of chemical physics.

[316]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[317]  Peter Pulay,et al.  Second-order Møller–Plesset calculations with dual basis sets , 2003 .

[318]  M. Olzmann,et al.  Thermochemistry of the HOSO2+O2 association reaction and enthalpy of formation of HOSO4: A quantum chemical study , 2009 .

[319]  D. Tew,et al.  Assessment of basis sets for F12 explicitly-correlated molecular electronic-structure methods , 2009 .

[320]  G. A. Petersson,et al.  The CCSD(T) complete basis set limit for Ne revisited. , 2008, The Journal of chemical physics.

[321]  L. Adamowicz,et al.  Multicenter and multiparticle integrals for explicitly correlated cartesian gaussian‐type functions , 1992 .

[322]  V. Zotev,et al.  Analytic evaluation of four-particle integrals with complex parameters , 2002 .

[323]  Kozlowski,et al.  Nonadiabatic variational calculations for the ground state of the positronium molecule. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[324]  David Feller,et al.  Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons. , 2010, The Journal of chemical physics.

[325]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[326]  C. Pekeris,et al.  Logarithmic Terms in the Wave Functions of the Ground State of Two-Electron Atoms , 1966 .

[327]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. II. Molecular systems , 1987 .

[328]  Emily A. Carter,et al.  Pseudospectral full configuration interaction , 1992 .

[329]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[330]  Robert J. Gdanitz,et al.  An accurate interaction potential for neon dimer (Ne2) , 2001 .

[331]  P. Taylor,et al.  Molecular integrals over Gaussian-type geminal basis functions , 1997 .

[332]  W. Kutzelnigg,et al.  CID and CEPA calculations with linear r12 terms , 1991 .

[333]  Pierre Valiron,et al.  Improved algorithm for triple-excitation contributions within the coupled cluster approach , 2005 .

[334]  A. Varandas Basis-set extrapolation of the correlation energy , 2000 .

[335]  C. Hättig,et al.  Recent Advances in Explicitly Correlated Coupled-Cluster Response Theory for Excited States and Optical Properties , 2010 .

[336]  Edward F. Valeev,et al.  Equations of explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[337]  W. Kołos,et al.  Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .

[338]  W. Kutzelnigg The principle-quantum-number (and the radial-quantum-number) expansion of the correlation energy of two-electron atoms. , 2008, Physical chemistry chemical physics : PCCP.

[339]  T. Koga Hylleraas six‐term wave function: Correction , 1990 .

[340]  N. Handy The transcorrelated method for accurate correlation energies using gaussian-type functions: examples on He, H2, LiH and H2O , 2002 .

[341]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. IV. A simplified treatment of strong orthogonality in MBPT and coupled cluster calculations , 1984 .

[342]  L. Adamowicz,et al.  Very accurate potential energy curve of the LiH molecule. , 2011, The Journal of chemical physics.

[343]  G. A. Petersson,et al.  Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions , 1981 .

[344]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[345]  S. Ten-no Three-electron integral evaluation in the transcorrelated method using a frozen Gaussian geminal , 2000 .

[346]  J. Noga,et al.  Linear R12 Terms in Coupled Cluster Theory , 2003 .

[347]  P. Botschwina,et al.  Weak interactions in ion–ligand complexes of C3H3(+) isomers: competition between H-bound and C-bound structures in c-C3H3(+)·L and H2CCCH(+)·L (L = Ne, Ar, N2, CO2, and O2). , 2011, Physical chemistry chemical physics : PCCP.

[348]  F. Manby,et al.  An explicitly correlated second order Møller-Plesset theory using a frozen Gaussian geminal. , 2004, The Journal of chemical physics.

[349]  W. D. Allen,et al.  Complete basis set limit studies of conventional and R12 correlation methods: The silicon dicarbide (SiC2) barrier to linearity , 2003 .

[350]  A. A. Frost,et al.  Hydrogen Molecule Energy Calculation by Correlated Molecular Orbitals , 1951 .

[351]  J. Noga,et al.  The performance of the explicitly correlated coupled cluster method. I. The four‐electron systems Be, Li−, and LiH , 1995 .

[352]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[353]  T. Helgaker,et al.  Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics. , 2007, Physical chemistry chemical physics : PCCP.

[354]  C. Hättig,et al.  Structures and harmonic vibrational frequencies for excited states of diatomic molecules with CCSD(R12) and CCSD(F12) models. , 2009, The Journal of chemical physics.

[355]  Robert J. Gdanitz,et al.  A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .

[356]  H. Lüthi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies , 1995 .

[357]  T. Koga Hylleraas and Kinoshita wave functions: Revision and correction , 1991 .

[358]  G. Drake,et al.  Variational eigenvalues for the S states of helium , 1994 .

[359]  T. Koga Hylleraas wave functions revisited , 1992 .

[360]  Edward F. Valeev,et al.  Variational formulation of perturbative explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[361]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[362]  The convergence of the Rayleigh-Ritz Method in quantum chemistry: I. the criteria of convergence , 1977 .

[363]  J. Rychlewski,et al.  Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions , 1995 .

[364]  R. Grimm,et al.  Monte-Carlo solution of Schrödinger's equation☆ , 1971 .

[365]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[366]  Wim Klopper,et al.  Orbital-invariant formulation of the MP2-R12 method , 1991 .

[367]  J. Gauss,et al.  Basis set limit CCSD(T) harmonic vibrational frequencies. , 2007, The journal of physical chemistry. A.

[368]  J. Noga,et al.  Implementation of the CCSD(T)-F12 method using cusp conditions. , 2008, Physical chemistry chemical physics : PCCP.

[369]  J. Noga,et al.  Proton Affinity and Enthalpy of Formation of Formaldehyde , 2009 .

[370]  M. Ruiz Evaluation of Hylleraas-CI atomic integrals by integration over the coordinates of one electron. I. Three-electron integrals , 2009 .

[371]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[372]  Claudia Filippi,et al.  Absorption Spectrum of the Green Fluorescent Protein Chromophore: A Difficult Case for ab Initio Methods? , 2009, Journal of chemical theory and computation.

[373]  N. Handy On the minimization of the variance of the transcorrelated hamiltonian , 1971 .

[374]  L. Wolniewicz,et al.  Potential‐Energy Curve for the B1Σu+ State of the Hydrogen Molecule , 1966 .

[375]  W. Kutzelnigg,et al.  MP2-R12 calculations on the relative stability of carbocations , 1990 .

[376]  P. Gill,et al.  Communication: A new approach to dual-basis second-order Møller-Plesset calculations. , 2011, The Journal of chemical physics.

[377]  D. Tew,et al.  Implementation of the full explicitly correlated coupled-cluster singles and doubles model CCSD-F12 with optimally reduced auxiliary basis dependence. , 2008, The Journal of chemical physics.

[378]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[379]  Wojciech Cencek,et al.  Benchmark calculations for He2+ and LiH molecules using explicitly correlated Gaussian functions , 2000 .

[380]  L. Adamowicz,et al.  Newton–Raphson optimization of the many‐body nonadiabatic wave function expressed in terms of explicitly correlated Gaussian functions , 1992 .

[381]  T. Helgaker,et al.  The geminal basis in explicitly correlated wave functions , 2009 .

[382]  Werner Kutzelnigg,et al.  Hund's rules, the alternating rule, and symmetry holes , 1993 .

[383]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[384]  W. Klopper,et al.  Analytic Calculation of First-order Molecular Properties at the Explicitly-correlated Second-order Møller-Plesset Level , 2010 .

[385]  Stefan Grimme,et al.  Toward the exact solution of the electronic Schrödinger equation for noncovalent molecular interactions: worldwide distributed quantum monte carlo calculations. , 2008, The journal of physical chemistry. A.

[386]  Mihály Kállay,et al.  Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory. , 2006, The Journal of chemical physics.

[387]  Debashis Mukherjee,et al.  Cumulant expansion of the reduced density matrices , 1999 .

[388]  Donald G. Truhlar,et al.  Basis-set extrapolation , 1998 .

[389]  C. Samson,et al.  Benchmarking ethylene and ethane: second-order Møller–Plesset pair energies for localized molecular orbitals , 2004 .

[390]  Søren Fournais,et al.  Sharp Regularity Results for Coulombic Many-Electron Wave Functions , 2003, math-ph/0312060.

[391]  D. Truhlar,et al.  Geometry Optimization with an Infinite Basis Set , 1999 .

[392]  D. Ceperley,et al.  Monte Carlo simulation of a many-fermion study , 1977 .

[393]  S. Ten-no,et al.  Density fitting for the decomposition of three-electron integrals in explicitly correlated electronic structure theory , 2003 .

[394]  Trygve Helgaker,et al.  Basis‐set completeness profiles in two dimensions , 2002, J. Comput. Chem..

[395]  A. Thakkar,et al.  Compact Hylleraas-type wavefunctions for the lithium isoelectronic sequence , 2002 .

[396]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. III. Electron affinities of first-row atoms , 1999 .

[397]  H. Kleindienst,et al.  The atomic three‐body problem. An accurate lower bond calculation using wave functions with logarithmic terms , 1990 .

[398]  S. Ten-no,et al.  Explicitly correlated second-order Møller-Plesset perturbation theory for unrestricted Hartree-Fock reference functions with exact satisfaction of cusp conditions. , 2009, The Journal of chemical physics.

[399]  H. Nakatsuji,et al.  LiH potential energy curves for ground and excited states with the free complement local Schrödinger equation method , 2010 .

[400]  E. Hylleraas The Schrödinger Two-Electron Atomic Problem , 1964 .

[401]  K. Szalewicz,et al.  Helium Dimer Interaction Energies from Gaussian Geminal and Orbital Calculations , 2004 .

[402]  So Hirata,et al.  Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. , 2008, The Journal of chemical physics.

[403]  F. Manby,et al.  Efficient Explicitly Correlated Coupled-Cluster Approximations , 2010 .

[404]  J. Noga,et al.  R12-calibrated H2O-H2 interaction: full dimensional and vibrationally averaged potential energy surfaces. , 2008, The Journal of chemical physics.

[405]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[406]  James S. Sims,et al.  High‐precision Hy–CI variational calculations for the ground state of neutral helium and helium‐like ions , 2002 .

[407]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[408]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[409]  W. Klopper,et al.  Analytic calculation of first-order molecular properties at the explicitly correlated second-order Moller-Plesset level: basis-set limits for the molecular quadrupole moments of BH and HF. , 2005, The Journal of chemical physics.

[410]  W. Kutzelnigg Theory of Electron Correlation , 2003 .

[411]  N. H. March,et al.  Nuclear cusp conditions for components of the molecular energy density relevant for density-functional theory , 2000 .

[412]  W. Klopper Limiting values for Mo/ller–Plesset second‐order correlation energies of polyatomic systems: A benchmark study on Ne, HF, H2O, N2, and He...He , 1995 .

[413]  W. Klopper Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques , 2001 .

[414]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[415]  J. Noga,et al.  Accurate quantum-chemical prediction of enthalpies of formation of small molecules in the gas phase. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[416]  Trygve Helgaker,et al.  Quantitative quantum chemistry , 2008 .

[417]  C. Ceccarelli,et al.  Rotational excitation of formaldehyde by hydrogen molecules: ortho-H_2CO at low temperature , 2009 .

[418]  W. Kutzelnigg,et al.  Correlation Coefficients for Electronic Wave Functions , 1968 .

[419]  Vladimir I. Korobov Nonrelativistic ionization energy for the helium ground state , 2002 .

[420]  R. D. Poshusta,et al.  Correlated Gaussian wavefunctions for H3 , 1973 .

[421]  H. Schwartz Ritz-Hylleraas Solutions of the Ground State of Two-Electron Atoms Involving Fractional Powers , 1960 .

[422]  S. Ten-no A simple F12 geminal correction in multi-reference perturbation theory , 2007 .

[423]  Wojciech Cencek,et al.  Sub-microhartree accuracy potential energy surface for H3+ including adiabatic and relativistic effects. I. Calculation of the potential points , 1998 .

[424]  J. D. Morgan,et al.  Erratum: Rates of convergence of the partial-wave expansions of atomic correlation energies [J. Chem. Phys. 96, 4484 (1992)] , 1992 .

[425]  R. Christoffersen,et al.  Explicitly correlated configuration interaction wavefunctions using spherical Gaussians. Formulation and initial application to LiH , 1975 .

[426]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[427]  G. Łach,et al.  Relativistic and quantum electrodynamics effects in the helium pair potential. , 2010, Physical review letters.

[428]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[429]  S. Ten-no A feasible transcorrelated method for treating electronic cusps using a frozen Gaussian geminal , 2000 .

[430]  N. Handy,et al.  Some investigations of the MP2-R12 method , 1991 .

[431]  L. Adamowicz,et al.  New more accurate calculations of the ground state potential energy surface of H(3) (+). , 2009, The Journal of chemical physics.

[432]  P. Taylor,et al.  Symmetry-adapted integrals over many-electron basis functions and operators , 2001 .

[433]  David H. Bailey,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS , 2003 .

[434]  Sven Larsson,et al.  Calculations on the 2 S Ground State of the Lithium Atom Using Wave Functions of Hylleraas Type , 1968 .

[435]  Edward F. Valeev,et al.  Perturbative correction for the basis set incompleteness error of complete-active-space self-consistent field. , 2010, The Journal of chemical physics.

[436]  W. Kutzelnigg,et al.  Explicitly correlated potential energy surface of , including relativistic and adiabatic corrections , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[437]  J. Noga,et al.  Erratum: “The accuracy of atomization energies from explicitly correlated coupled-cluster calculations” [J. Chem. Phys. 115, 2022 (2001)] , 2001 .

[438]  J. Sims,et al.  Mathematical and computational science issues in high precision Hylleraas-configuration interaction variational calculations: III. Four-electron integrals , 2004 .

[439]  T. Shiozaki Evaluation of Slater-type geminal integrals using tailored Gaussian quadrature , 2009 .

[440]  N. Handy,et al.  CI-Hylleraas variational calculation on the ground state of the neon atom , 1976 .

[441]  T. Helgaker,et al.  Accurate molecular geometries of the protonated water dimer , 2000 .

[442]  F. Harris Gegenbauer expansions for three-electron integrals , 2005 .

[443]  J. G. Zabolitzky,et al.  A new functional for variational calculation of atomic and molecular second-order correlation energies , 1982 .

[444]  R. Gdanitz,et al.  Accurately solving the electronic Schrodinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. VII. The hydrogen fluoride molecule. , 2005, The Journal of chemical physics.

[445]  Kalju Kahn,et al.  Convergence of third order correlation energy in atoms and molecules , 2007, J. Comput. Chem..

[446]  Hiroshi Nakatsuji,et al.  Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method. , 2007, The Journal of chemical physics.

[447]  Omar Valsson,et al.  Photoisomerization of Model Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation Theory , 2010 .

[448]  Jeremiah J. Wilke,et al.  Spin-Restriction in Explicitly Correlated Coupled Cluster Theory: The Z-Averaged CCSD(2)R12 Approach. , 2011, Journal of chemical theory and computation.

[449]  D. Tew,et al.  Heat of formation of the HOSO2 radical from accurate quantum chemical calculations. , 2008, The Journal of chemical physics.

[450]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[451]  J. Komasa Lower bounds to the dynamic dipole polarizability of beryllium , 2002 .

[452]  W. D. Allen,et al.  Anharmonic force field, vibrational energies, and barrier to inversion of SiH3− , 2000 .

[453]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[454]  Nakatsuka,et al.  Excess-path-length distribution of fast charged particles. , 1987, Physical review. D, Particles and fields.

[455]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[456]  D. Tew,et al.  Accurate computational thermochemistry from explicitly correlated coupled-cluster theory , 2010 .

[457]  L. Adamowicz,et al.  Nonrelativistic molecular quantum mechanics without approximations: electron affinities of LiH and LiD. , 2004, The Journal of chemical physics.

[458]  K. Szalewicz,et al.  Analytic first-order properties from explicitly correlated many-body perturbation theory and Gaussian geminal basis , 1998 .

[459]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[460]  H. James,et al.  The Ground State of the Hydrogen Molecule , 1933 .

[461]  K. Szalewicz,et al.  Gaussian geminals in explicitly correlated coupled cluster theory including single and double excitations , 1999 .

[462]  T. Crawford,et al.  Sources of error in electronic structure calculations on small chemical systems. , 2006, The Journal of chemical physics.

[463]  D. Schwenke The extrapolation of one-electron basis sets in electronic structure calculations: how it should work and how it can be made to work. , 2005, The Journal of chemical physics.

[464]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. V. Cartesian Gaussian geminals and the neon atom , 1986 .

[465]  J. Aguilera-Iparraguirre,et al.  The phenyl + phenyl reaction as pathway to benzynes: An experimental and theoretical study , 2011 .

[466]  S. Ten-no,et al.  Basis set limits of the second order Moller-Plesset correlation energies of water, methane, acetylene, ethylene, and benzene. , 2007, The Journal of chemical physics.

[467]  P. Botschwina,et al.  On the equilibrium structures of the complexes H2C3H+ · Ar and c-C3H3(+) · Ar: results of explicitly correlated coupled cluster calculations. , 2011, The Journal of chemical physics.

[468]  H. Kleindienst,et al.  Atomic integrals in Hylleraas-CI calculations with double-linked correlation terms , 1995 .

[469]  G. A. Petersson,et al.  Interference effects in pair correlation energies: Helium L‐limit energies , 1981 .

[470]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[471]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[472]  R. Gdanitz Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. , 1999 .

[473]  J. Aguilera-Iparraguirre,et al.  Accurate ab initio computation of thermochemical data for C3Hx (x=0,…,4) species , 2008 .

[474]  J. Sauer,et al.  Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. , 2009, Journal of the American Chemical Society.

[475]  Trygve Helgaker,et al.  Basis set convergence of the interaction energy of hydrogen-bonded complexes , 1999 .

[476]  J. Almlöf,et al.  Dual basis sets in calculations of electron correlation , 1991 .

[477]  G. Drake High precision variational calculations for the 1s21S state of H − and the 1s21s, 1s2s 1s and 1s2s 3s states of helium , 1988 .

[478]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[479]  Edward F. Valeev,et al.  The second-order Mo/ller–Plesset limit for the barrier to linearity of water , 2001 .

[480]  F. Manby,et al.  Explicitly correlated second-order perturbation theory using density fitting and local approximations. , 2006, The Journal of chemical physics.

[481]  Morgan,et al.  Fock's expansion, Kato's cusp conditions, and the exponential ansatz. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[482]  N. Handy,et al.  A first solution, for LiH, of a molecular transcorrelated wave equation by means of restricted numerical integration , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[483]  C. Hättig,et al.  Frequency-dependent nonlinear optical properties with explicitly correlated coupled-cluster response theory using the CCSD(R12) model. , 2007, The Journal of chemical physics.

[484]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[485]  So Hirata,et al.  Higher-order explicitly correlated coupled-cluster methods. , 2009, The Journal of chemical physics.

[486]  D. Tew,et al.  Towards the Hartree-Fock and coupled-cluster singles and doubles basis set limit: A study of various models that employ single excitations into a complementary auxiliary basis set. , 2010, The Journal of chemical physics.

[487]  Guntram Rauhut,et al.  Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory. , 2009, The Journal of chemical physics.

[488]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[489]  W. Nörtershäuser,et al.  Erratum: High Precision Atomic Theory for Li and Be + : QED Shifts and Isotope Shifts [Phys. Rev. Lett. 100, 243002 (2008)] , 2009 .

[490]  Robert J. Gdanitz ACCURATELY SOLVING THE ELECTRONIC SCHRODINGER EQUATION OF ATOMS AND MOLECULES USING EXPLICITLY CORRELATED (R12-)MR-CI IV. THE HELIUM DIMER (HE2) , 1999 .

[491]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[492]  SHARP REGULARITY RESULTS FOR MANY-ELECTRONWAVE FUNCTIONSS , 2004 .

[493]  K. Szalewicz,et al.  COMPLETENESS CRITERIA FOR EXPLICITLY CORRELATED GAUSSIAN GEMINAL BASES OF AXIAL SYMMETRY , 1997 .

[494]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[495]  Jacek Komasa,et al.  Explicitly Correlated Functions in Variational Calculations , 2003 .

[496]  Trygve Helgaker,et al.  A priori calculation of molecular properties to chemical accuracy , 2004 .

[497]  D. R. Hartree,et al.  The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[498]  Edward F. Valeev Combining explicitly correlated R12 and Gaussian geminal electronic structure theories. , 2006, The Journal of chemical physics.

[499]  Frank Neese,et al.  Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? , 2011, Journal of chemical theory and computation.

[500]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[501]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[502]  J. Noga,et al.  Multireference F12 coupled cluster theory: The Brillouin-Wigner approach with single and double excitations , 2011 .

[503]  N. Handy,et al.  A condition to remove the indeterminacy in interelectronic correlation functions , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[504]  J. Sims,et al.  Mathematical and computational science issues in high precision Hylleraas–configuration interaction variational calculations: II. Kinetic energy and electron–nucleus interaction integrals , 2007 .

[505]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[506]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[507]  R. Gdanitz Accurately solving the electronic Schrödinger equation of atoms and molecules by extrapolating to the basis set limit. I. The helium dimer (He2) , 2000 .

[508]  Kirk A Peterson,et al.  Optimized auxiliary basis sets for explicitly correlated methods. , 2008, The Journal of chemical physics.

[509]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .

[510]  Debashis Mukherjee,et al.  Normal order and extended Wick theorem for a multiconfiguration reference wave function , 1997 .

[511]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[512]  J. Simons,et al.  Transition-state energy and geometry, exothermicity, and van der Waals wells on the F + H2 --> FH + H ground-state surface calculated at the r12-ACPF-2 level. , 2006, The journal of physical chemistry. A.

[513]  S. Ten-no,et al.  Implementation of the CCSD(T)(F12) method using numerical quadratures , 2009 .

[514]  Hans Peter Lüthi,et al.  Ab initio computations close to the one‐particle basis set limit on the weakly bound van der Waals complexes benzene–neon and benzene–argon , 1994 .

[515]  Joseph R. Lane,et al.  Explicit correlation and intermolecular interactions: investigating carbon dioxide complexes with the CCSD(T)-F12 method. , 2011, The Journal of chemical physics.

[516]  J. Noga,et al.  CH5+ : THE STORY GOES ON. AN EXPLICITLY CORRELATED COUPLED-CLUSTER STUDY , 1997 .

[517]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[518]  L. Adamowicz,et al.  How to calculate H3 better. , 2009, The Journal of chemical physics.

[519]  W. Klopper,et al.  Coupled-cluster response theory with linear-r12 corrections: the CC2-R12 model for excitation energies. , 2006, The Journal of chemical physics.

[520]  K. Szalewicz,et al.  Explicitly-correlated Gaussian geminals in electronic structure calculations , 2010 .

[521]  H. Kjaergaard,et al.  Explicitly correlated intermolecular distances and interaction energies of hydrogen bonded complexes. , 2009, The Journal of chemical physics.

[522]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[523]  H. Nakatsuji,et al.  Free iterative-complement-interaction calculations of the hydrogen molecule (11 pages) , 2005 .

[524]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[525]  Horst M. Sulzbach,et al.  Exploring the boundary between aromatic and olefinic character: Bad news for second-order perturbation theory and density functional schemes , 1996 .

[526]  T. Helgaker,et al.  Efficient evaluation of one-center three-electron Gaussian integrals , 2001 .

[527]  W. Nörtershäuser,et al.  High precision atomic theory for Li and Be+: QED shifts and isotope shifts. , 2008, Physical review letters.

[528]  A. Thakkar,et al.  Variational calculations for helium-like ions using generalized Kinoshita-type expansions , 2003 .

[529]  F. Grein,et al.  Configuration interaction combined with a correlation factor for two-electron atoms , 1970 .

[530]  Drake,et al.  Eigenvalues and expectation values for the 1s22s 2S, 1s22p 2P, and 1s23d 2D states of lithium. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[531]  K. Szalewicz,et al.  Relativistic correction to the helium dimer interaction energy. , 2005, Physical review letters.

[532]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. II , 1962 .

[533]  W. Lester,et al.  Gaussian Correlation Functions: Two‐Electron Systems , 1964 .

[534]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[535]  A. Köhn Explicitly correlated connected triple excitations in coupled-cluster theory. , 2009, The Journal of chemical physics.