Local search for the Steiner tree problem in the Euclidean plane

Abstract Most heuristics for the Steiner tree problem in the Euclidean plane perform a series of iterative improvements using the minimum spanning tree as an initial solution. We may therefore characterize them as local search heuristics. In this paper, we first give a survey of existing heuristic approaches from a local search perspective, by setting up solution spaces and neighbourhood structures. Secondly, we present a new general local search approach which is based on a list of full Steiner trees constructed in a preprocessing phase. This list defines a solution space on which three neighbourhood structures are proposed and evaluated. Computational results show that this new approach is very competitive from a cost–benefit point of view. Furthermore, it has the advantage of being easy to apply to the Steiner tree problem in other metric spaces and to obstacle avoiding variants.

[1]  Geoffrey Ross Grimwood The Euclidean Steiner Tree Problem: Simulated Annealing and Other Heuristics , 1994 .

[2]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[3]  François Chapeau-Blondeau,et al.  A Dynamic Adaptive Relaxation Scheme Applied to the Euclidean Steiner Minimal Tree Problem , 1997, SIAM J. Optim..

[4]  Martin Zachariasen,et al.  Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem , 1999, Algorithmica.

[5]  D. T. Lee,et al.  An O(n log n) heuristic for steiner minimal tree problems on the euclidean metric , 1981, Networks.

[6]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[7]  J. MacGregor Smith,et al.  STEINER TREES, STEINER CIRCUITS AND THE INTERFERENCE PROBLEM IN BUILDING DESIGN , 1979 .

[8]  Ronald L. Graham,et al.  Steiner Trees for Ladders , 1978 .

[9]  F. Hwang,et al.  A linear time algorithm for full steiner trees , 1986 .

[10]  Stefan Voß,et al.  Steiner's Problem in Graphs: Heuristic Methods , 1992, Discret. Appl. Math..

[11]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[12]  Ding-Zhu Du,et al.  On better heuristics for Steiner minimum trees , 1992, Math. Program..

[13]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[14]  Frank K. Hwang,et al.  The Shortest Network under a Given Topology , 1992, J. Algorithms.

[15]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[16]  Martin Zachariasen,et al.  Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .

[17]  Reinhard Männer,et al.  Optimization of Steiner Trees Using Genetic Algorithms , 1989, International Conference on Genetic Algorithms.

[18]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[19]  J. Beasley A heuristic for Euclidean and rectilinear Steiner problems , 1992 .

[20]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[21]  J. Soukup,et al.  Minimum Steiner trees, roots of a polynomial, and other magic , 1977, SMAP.

[22]  Pawel Winter,et al.  Steiner minimal trees for three points with one convex polygonal obstacle , 1991, Ann. Oper. Res..

[23]  J. Smith 5 – Generalized Steiner network problems in engineering design , 1985 .

[24]  M. Lundy Applications of the annealing algorithm to combinatorial problems in statistics , 1985 .

[25]  Michael L. Overton,et al.  Two Heuristics for the Steiner Tree , 1996 .

[26]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[27]  John E. Beasley,et al.  A delaunay triangulation-based heuristic for the euclidean steiner problem , 1994, Networks.

[28]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[29]  Shi-Kuo Chang,et al.  The Generation of Minimal Trees with a Steiner Topology , 1972, JACM.

[30]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[31]  Alan T. Sherman,et al.  Experimental evaluation of a partitioning algorithm for the steiner tree problem in R2 and R3 , 1994, Networks.

[32]  Richard Weiss,et al.  An O(N2) heuristic for steiner minimal trees in E3 , 1995, Networks.

[33]  J. Soukup,et al.  Set of test problems for the minimum length connection networks , 1973, SMAP.

[34]  Der-Tsai Lee,et al.  An O(n log n) Heuristic Algorithm for the Rectilinear Steiner Minimal Tree Problem , 1980 .

[35]  E. Thompson,et al.  The method of minimum evolution , 1973, Annals of human genetics.

[36]  Z. A. Melzak On the Problem of Steiner , 1961, Canadian Mathematical Bulletin.

[37]  J. Scott Provan An Approximation Scheme for Finding Steiner Trees with Obstacles , 1988, SIAM J. Comput..