A theorical model design for ERP software selection process under the constraints of cost and quality: A fuzzy approach

Enterprise Resource Planning (ERP) software selection is one of the most important decision making issues covering both qualitative and quantitative factors for organizations. Multiple criteria decision making (MCDM) has been found to be a useful approach to analyze these conflicting factors. Qualitative criteria are often accompanied by ambiguities and vagueness. This makes fuzzy logic a more natural approach to this kind of problems. This study presents a beneficial structure to the managers for use in ERP software vendor selection process. In order to evaluate ERP vendors methodologically, a hierarchical framework is also proposed. As a MCDM tool, we used analytic hierarchy process (AHP) and its fuzzy extension to obtain more decisive judgments by prioritizing criteria and assigning weights to the alternatives. The objective of this paper is to select the most appropriate alternative that meets the customer’s requirements with respect to cost and quality constraints. In the end of this study, a real-world case study from Turkey is also presented to illustrate efficiency of the methodology and its applicability inpractice.

[1]  Tomoe Entani,et al.  Dual models of interval DEA and its extension to interval data , 2002, Eur. J. Oper. Res..

[2]  Da Ruan,et al.  Fuzzy group decision making for selection among computer integrated manufacturing systems , 2003, Comput. Ind..

[3]  Ashraf Labib,et al.  A design strategy for reconfigurable manufacturing systems (RMSs) using analytical hierarchical process (AHP): A case study , 2003 .

[4]  M. Khodabakhshi,et al.  CHANCE CONSTRAINED ADDITIVE INPUT RELAXATION MODEL IN STOCHASTIC DATA ENVELOPMENT ANALYSIS , 2010 .

[5]  Gholam Reza Jahanshahloo,et al.  Determining assurance interval for non-Archimedean element in the improving outputs model in DEA , 2004, Appl. Math. Comput..

[6]  M. K. Khan,et al.  Statistical gap Tauberian theorems in metric spaces , 2003 .

[7]  C. K. Kwong,et al.  A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment , 2002, J. Intell. Manuf..

[8]  Heinrich Rommelfanger,et al.  Fuzzy linear programming with single or multiple objective funtions , 1999 .

[9]  B.E. Shi,et al.  Robotic gaze and vergence control via disparity energy neurons , 2008, 2008 11th International Workshop on Cellular Neural Networks and Their Applications.

[10]  I. J. Schoenberg The Integrability of Certain Functions and Related Summability Methods , 1959 .

[11]  C. Kahraman,et al.  Multi‐criteria supplier selection using fuzzy AHP , 2003 .

[12]  Evangelos Triantaphyllou,et al.  USING THE ANALYTIC HIERARCHY PROCESS FOR DECISION MAKING IN ENGINEERING APPLICATIONS: SOME CHALLENGES , 1995 .

[13]  A. Gasteratos,et al.  Fuzzy vergence control for an active binocular vision system , 2008, 2008 7th IEEE International Conference on Cybernetic Intelligent Systems.

[14]  Yee Leung,et al.  Spatial Analysis and Planning under Imprecision , 1988 .

[15]  Antonios Gasteratos,et al.  Development of a stereo vision system for remotely operated robots: A control and video streaming architecture , 2008, 2008 IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems.

[16]  Evangelos Triantaphyllou,et al.  Multi-criteria Decision Making Methods: A Comparative Study , 2000 .

[17]  Peijun Guo,et al.  Fuzzy DEA: a perceptual evaluation method , 2001, Fuzzy Sets Syst..

[18]  M. Khodabakhshi,et al.  An additive model approach for estimating returns to scale in imprecise data envelopment analysis , 2010 .

[19]  Hokey Min,et al.  Selection of Software: The Analytic Hierarchy Process , 1992 .

[20]  J. Buckley,et al.  Fuzzy hierarchical analysis , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[21]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[22]  M. Khodabakhshi,et al.  An input relaxation measure of efficiency in stochastic data envelopment analysis , 2009 .

[23]  J. Kwon,et al.  On statistical andp-Cesaro convergence of fuzzy numbers , 2000 .

[24]  Alexis Tsoukiàs,et al.  IusWare: a methodology for the evaluation and selection of software products , 1997, IEE Proc. Softw. Eng..

[25]  A. Bernardino Correlation Based Vergence Control Using Log-polar Images ? , 1996 .

[26]  Minho Lee,et al.  Biologically motivated vergence control system using human-like selective attention model , 2006, Neurocomputing.

[27]  Masatoshi Sakawa,et al.  Fuzzy nonlinear programming with single or multiple objective functions , 1999 .

[28]  Mohammad Khodabakhshi,et al.  A super-efficiency model based on improved outputs in data envelopment analysis , 2007, Appl. Math. Comput..

[29]  R. J. Kuo,et al.  A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network , 2002, Comput. Ind..

[30]  Chiang Kao,et al.  Fuzzy efficiency measures in data envelopment analysis , 2000, Fuzzy Sets Syst..

[31]  Volker Stix,et al.  Profile distance method - a multi-attribute decision making approach for information system investments , 2006, Decis. Support Syst..

[32]  Mao-Jiun J. Wang,et al.  A comprehensive framework for selecting an ERP system , 2004 .

[33]  Pedro Terán A reduction principle for obtaining Tauberian theorems for statistical convergence in metric spaces , 2005 .

[34]  Teresa León,et al.  A fuzzy mathematical programming approach to the assessment of efficiency with DEA models , 2003, Fuzzy Sets Syst..

[35]  Kapil Kumar,et al.  On I-limit points and I-cluster points of sequences of fuzzy numbers , 2007 .

[36]  Shu-Cherng Fang,et al.  Fuzzy data envelopment analysis (DEA): a possibility approach , 2003, Fuzzy Sets Syst..

[37]  Mohammed I Al Khalil,et al.  Selecting the appropriate project delivery method using AHP , 2002 .

[38]  H. Zimmermann DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .

[39]  Steven A. Melnyk,et al.  Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process , 2002, Eur. J. Oper. Res..

[40]  Silvio P. Sabatini,et al.  Version and vergence control of a stereo camera head by fitting the movement into the Hering's law , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[41]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[42]  Neil A. M. Maiden,et al.  Acquiring COTS software selection requirements , 1998, Proceedings of IEEE International Symposium on Requirements Engineering: RE '98.

[43]  Norman F. Schneidewind,et al.  IEEE Standard For A Software Quality Metrics Methodology Revision And Reaffirmation , 1997, Proceedings of IEEE International Symposium on Software Engineering Standards.

[44]  Patricia K. Lawlis,et al.  A Formal Process for Evaluating COTS Software Products , 2001, Computer.

[45]  Giulio Sandini,et al.  Dynamic Vergence Using Log-Polar Images , 1997, International Journal of Computer Vision.

[46]  Georgios Ch. Sirakoulis,et al.  Review of stereo matching algorithms for 3D vision , 2007 .

[47]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  M. Khodabakhshi,et al.  Estimating most productive scale size with stochastic data in data envelopment analysis , 2009 .

[49]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[50]  C. Carlsson,et al.  A parametric approach to fuzzy linear programming , 1986 .

[51]  Antonios Gasteratos Tele-Autonomous Active Stereo-Vision Head , 2008 .

[52]  Salih Aytar,et al.  Rough Statistical Convergence , 2008 .

[53]  D. Chang Applications of the extent analysis method on fuzzy AHP , 1996 .

[54]  Ekrem Savas,et al.  On statistically convergent double sequences of fuzzy numbers , 2004, Inf. Sci..

[55]  Ferenc Móricz Ordinary convergence follows from statistical summability $(C,1)$ in the case of slowly decreasing or oscillating sequences , 2004 .

[56]  Abdullah S. Al-Mudimigh,et al.  ERP software implementation: an integrative framework , 2001, Eur. J. Inf. Syst..

[57]  Mikail Et,et al.  lambda-Difference sequence spaces of fuzzy numbers , 2009, Fuzzy Sets Syst..

[58]  Salih Aytar Statistical limit points of sequences of fuzzy numbers , 2004, Inf. Sci..

[59]  Giulio Sandini,et al.  Disparity Estimation on Log-Polar Images and Vergence Control , 2001, Comput. Vis. Image Underst..

[60]  Peter B. Seddon,et al.  A Comprehensive Framework for Classifying the Benefits of ERP Systems , 2000 .

[61]  J. Ramík,et al.  Inequality relation between fuzzy numbers and its use in fuzzy optimization , 1985 .

[62]  Zeki Ayağ,et al.  An intelligent approach to ERP software selection through fuzzy ANP , 2007 .

[63]  Kamal M. Al‐Subhi Al‐Harbi,et al.  Application of the AHP in project management , 2001 .

[64]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[65]  Greg N. Gregoriou,et al.  An input-oriented super-efficiency measure in stochastic data envelopment analysis: Evaluating chief executive officers of US public banks and thrifts , 2010, Expert Syst. Appl..

[66]  Hanspeter A. Mallot,et al.  Vergence Control and Disparity Estimation with Energy Neurons: Theory and Implementation , 2002, ICANN.

[67]  Felix T.S. Chan,et al.  Evaluation methodologies for technology selection , 2000 .

[68]  Mohammad Khodabakhshi Super-efficiency in stochastic data envelopment analysis: An input relaxation approach , 2011, J. Comput. Appl. Math..

[69]  Mohammad Khodabakhshi,et al.  An input relaxation measure of efficiency in fuzzy data envelopment analysis (FDEA) , 2010, J. Intell. Fuzzy Syst..

[70]  Xuejie Zhang,et al.  Vergence Control of 2 DOF Pan-Tilt Binocular Cameras using a Log-Polar Representation of the Visual Cortex , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[71]  Jiaqin Yang,et al.  AN AHP DECISION MODEL FOR FACILITY LOCATION SELECTION , 1997 .

[72]  M. Khodabakhshi,et al.  A one-model approach based on relaxed combinations of inputs for evaluating input congestion in DEA , 2009 .

[73]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[74]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[75]  Binod Chandra Tripathy,et al.  On fuzzy real-valued double sequence space 2ℓpF , 2007, Math. Comput. Model..

[76]  Sol J. Greenspan,et al.  Scenario-Based Analysis of COTS Acquisition Impacts , 1998, Requirements Engineering.

[77]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[78]  Jens Leth Hougaard,et al.  Theory and Methodology Fuzzy scores of technical e ciency , 1999 .

[79]  Antonios Gasteratos,et al.  An adaptive fuzzy system for the control of the vergence angle on a robotic head , 2010, J. Intell. Fuzzy Syst..

[80]  C. Hwang,et al.  Fuzzy Mathematical Programming: Methods and Applications , 1995 .

[81]  E. Ertugrul Karsak,et al.  An integrated decision making approach for ERP system selection , 2009, Expert Syst. Appl..

[82]  Tara L. Alvarez,et al.  Dynamic assessment of disparity vergence ramps , 2007, Comput. Biol. Medicine.

[83]  Hepu Deng,et al.  Multicriteria analysis with fuzzy pairwise comparison , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[84]  Ferenc Móricz,et al.  Tauberian conditions under which statistical convergence follows from statistical summability by weighted means , 2004 .

[85]  H. Fast,et al.  Sur la convergence statistique , 1951 .

[86]  D. Dubois,et al.  Systems of linear fuzzy constraints , 1980 .

[87]  Chi-Tung Chang,et al.  TAUBERIAN THEOREMS IN THE STATISTICAL SENSE FOR THE WEIGHTED MEANS OF DOUBLE SEQUENCES , 2007 .

[88]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[89]  M. K. Khan,et al.  Statistical extensions of some classical Tauberian theorems , 2000 .

[90]  Jyrki Kontio,et al.  A case study in applying a systematic method for COTS selection , 1996, Proceedings of IEEE 18th International Conference on Software Engineering.

[91]  W. Pedrycz,et al.  A fuzzy extension of Saaty's priority theory , 1983 .

[92]  Tibor Šalát,et al.  On statistically convergent sequences of real numbers , 1980 .

[93]  Masahiro Inuiguchi,et al.  Data Envelopment Analysis with Fuzzy Input-Output Data , 2000 .

[94]  Elisabeth J. Umble,et al.  Enterprise resource planning: Implementation procedures and critical success factors , 2003, Eur. J. Oper. Res..

[95]  William W. Cooper,et al.  Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis , 2002, J. Oper. Res. Soc..

[96]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[97]  Hidetomo Ichihashi,et al.  Fuzzy Programming: A Survey of Recent Developments , 1990 .

[98]  William W. Cooper,et al.  Stochastics and Statistics , 2001 .

[99]  Marcello Braglia,et al.  The analytic hierarchy process applied to maintenance strategy selection , 2000, Reliab. Eng. Syst. Saf..

[100]  Sudarsan Nanda,et al.  On sequences of fuzzy numbers , 1989 .

[101]  Mohammad Mursaleen,et al.  Tauberian theorems for statistically convergent double sequences , 2006, Inf. Sci..

[102]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[103]  Mikail Et,et al.  Lacunary Statistical and Lacunary Strongly Convergence of Generalized Difference Sequences of Fuzzy Numbers , 2006, Comput. Math. Appl..

[104]  Bo K. Wong,et al.  Group decision making in a multiple criteria environment: A case using the AHP in software selection , 2002, Eur. J. Oper. Res..

[105]  Olivier A. Girod,et al.  A Mathematical Programming Approach for Measuring Technical Efficiency in a Fuzzy Environment , 1998 .

[106]  Mikail Et,et al.  On lambda-statistical convergence of difference sequences of fuzzy numbers , 2006, Inf. Sci..

[107]  Jesús T. Pastor,et al.  An enhanced DEA Russell graph efficiency measure , 1999, Eur. J. Oper. Res..

[108]  Joan Pastor-Collado,et al.  TOWARDS THE UNIFICATION OF CRITICAL SUCCESS FACTORS FOR ERP IMPLEMENTATIONS , 2000 .

[109]  Felix T.S. Chan Design of material handling equipment selection system: an integration of expert system with analytic hierarchy process approach , 2002 .

[110]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[111]  Dar-Biau Liu,et al.  A risk-mitigating model for the development of reliable and maintainable large-scale commercial-off-the-shelf integrated software systems , 1997, Annual Reliability and Maintainability Symposium.

[112]  Yu Jing,et al.  A discussion on Extent Analysis Method and applications of fuzzy AHP , 1999, Eur. J. Oper. Res..

[113]  J. Sengupta A fuzzy systems approach in data envelopment analysis , 1992 .

[114]  Fatih Nuray,et al.  Statistical convergence of sequences of fuzzy numbers , 1995 .

[115]  Gholam Reza Jahanshahloo,et al.  Suitable combination of inputs for improving outputs in DEA with determining input congestion: Considering textile industry of China , 2004, Appl. Math. Comput..

[116]  Chi-Tung Chang,et al.  Tauberian conditions under which the original convergence of double sequences follows from the statistical convergence of their weighted means , 2007 .