Avalanche photodiodes and quenching circuits for single-photon detection.

Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

[1]  Massimo Ghioni,et al.  Novel avalanche photodiode for adaptive optics , 1994, Astronomical Telescopes and Instrumentation.

[2]  Kenneth P. Ghiggino,et al.  Fluorescence lifetime measurements using a novel fiber‐optic laser scanning confocal microscope , 1992 .

[3]  Carlo Samori,et al.  Tracking capabilities of SPADs for laser ranging , 1993 .

[4]  Sergio Cova,et al.  Performance comparison of a single‐photon avalanche diode with a microchannel‐plate photomultiplier in time‐correlated single‐photon counting , 1988 .

[5]  N. Nightingale,et al.  A new silicon avalanche photodiode photon counting detector module for astronomy , 1990 .

[6]  Massimo Ghioni,et al.  Improving the performance of commercially available Geiger-mode avalanche photodiodes , 1991 .

[7]  Joe C. Campbell,et al.  Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector , 1985 .

[8]  A. Lacaita,et al.  Trapping phenomena in avalanche photodiodes on nanosecond scale , 1991, IEEE Electron Device Letters.

[9]  Andrew D. MacGregor,et al.  Photon-counting techniques with silicon avalanche photodiodes , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[10]  C. Bethea,et al.  10-MHz single photon counting at 1.3 micron , 1984 .

[11]  M. Ghioni,et al.  Single-photon avalanche diode with ultrafast pulse response free from slow tails , 1993, IEEE Electron Device Letters.

[12]  R. Haitz,et al.  Model for the Electrical Behavior of a Microplasma , 1964 .

[13]  A. Lacaita,et al.  Single-photon optical-time-domain reflectometer at 1.3 Mum with 5-cm resolution and high sensitivity. , 1993, Optics letters.

[14]  Lloyd M. Davis,et al.  Single photon avalanche diode for single molecule detection , 1993, Optical Society of America Annual Meeting.

[15]  J G Rarity,et al.  Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching. , 1986, Applied optics.

[16]  Andrea L. Lacaita,et al.  Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives , 1993, Other Conferences.

[17]  Andrea L. Lacaita,et al.  Double epitaxy improves single-photon avalanche diode performance , 1989 .

[18]  Andrea L. Lacaita,et al.  AVALANCHE TRANSIENTS IN SHALLOW P-N JUNCTIONS BIASED ABOVE BREAKDOWN , 1995 .

[19]  Andrea L. Lacaita,et al.  No dead-space optical time-domain reflectometer , 1990 .

[20]  Andrea L. Lacaita,et al.  Photoluminescence lifetime microscope spectrometer based on time‐correlated single‐photon counting with an avalanche diode detector , 1990 .

[21]  Andrea L. Lacaita,et al.  Recent advances in the detection of optical photons with silicon photodiodes , 1993 .

[22]  B. F. Levine,et al.  Single photon detection at 1.3 μm using a gated avalanche photodiode , 1984 .

[23]  H. Fenker,et al.  Higher efficiency active quenching circuit for avalanche photodiodes , 1993 .

[24]  R. Haitz Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes , 1965 .

[25]  M Ghioni,et al.  High-accuracy picosecond characterization of gain-switched laser diodes. , 1989, Optics letters.

[26]  Rinaldo Cubeddu,et al.  Photophysical Properties of Photofrin II in Different Solvents , 1984 .

[27]  J G Rarity,et al.  Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching. , 1987, Applied optics.

[28]  G. Ripamonti,et al.  Active-Quenching and Gating Circuits for Single-Photon Avalanche Diodes (SPADs) , 1982, IEEE Transactions on Nuclear Science.

[29]  F Zappa,et al.  Single-photon detection beyond 1 µm: performance of commercially available germanium photodiodes. , 1994, Applied optics.

[30]  M. Bertolaccini,et al.  The measurement of luminescence waveforms by single‐photon techniques , 1973 .

[31]  Quincy L. Mattingly,et al.  Photon Burst Detection of Single Near-Infrared Fluorescent Molecules , 1993 .

[32]  R Cubeddu,et al.  FLUORESCENCE LIFETIMES OF ANGULAR FUROCOUMARINS , 1987, Photochemistry and photobiology.

[33]  Andrea L. Lacaita,et al.  Strong dependence of time resolution on detector diameter in single photon avalanche diodes , 1990 .

[34]  F Zappa,et al.  Nanosecond single-photon timing with InGaAs/InP photodiodes. , 1994, Optics letters.

[35]  Jaroslav Ricka,et al.  Dead‐time and afterpulsing correction in multiphoton timing with nonideal detectors , 1994 .

[36]  A. Lacaita,et al.  Limits to the Timing Performance of Single Photon Avalanche Diodes , 1995 .

[37]  Antonio Francesco Longoni,et al.  A study of the operation and performances of an avalanche diode as a single photon detector , 1975 .

[38]  S. Suzuki,et al.  Ultrafast microchannel plate photomultipliers. , 1988, Applied optics.

[39]  R. Cubeddu,et al.  A semiconductor detector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution , 1983, IEEE Journal of Quantum Electronics.

[40]  S. Cova,et al.  Towards picosecond resolution with single-photon avalanche diodes , 1981 .

[41]  Gerald S. Buller,et al.  All‐solid‐state microscope‐based system for picosecond time‐resolved photoluminescence measurements on II‐VI semiconductors , 1992 .

[42]  J. Rarity,et al.  Experimental violation of Bell's inequality based on phase and momentum. , 1990, Physical review letters.

[43]  Triggered‐avalanche detection of optical photons , 1981 .

[44]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[45]  J. Rarity,et al.  Single photon interference in 10 km long optical fibre interferometer , 1993 .

[46]  R. Kearney,et al.  Photon counting with photodiodes. , 1983, Applied optics.

[47]  Sergio Cova,et al.  Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity , 1986 .

[48]  Andrea L. Lacaita,et al.  20-ps timing resolution with single-photon avalanche diodes , 1989 .

[49]  Andrea L. Lacaita,et al.  Observation of avalanche propagation by multiplication assisted diffusion in p‐n junctions , 1990 .

[50]  Barry F. Levine,et al.  Near room temperature 1.3 μm single photon counting with a InGaAs avalanche photodiode , 1984 .

[51]  A. Lacaita,et al.  Subnanosecond single-photon timing with commercially available germanium photodiodes. , 1993, Optics letters.

[52]  Andrea L. Lacaita,et al.  Photon‐assisted avalanche spreading in reach‐through photodiodes , 1993 .