Hypoxia-Inducible Factor 1 (HIF-1) Pathway

Hypoxia-inducible factor 1 (HIF-1) is a basic helix-loop-helix-PAS domain transcription factor that is expressed in all metazoan organisms and is composed of HIF-1α and HIF-1β subunits. Under hypoxic conditions, HIF-1 regulates the transcription of hundreds of genes in a cell type–specific manner. The HIF-1α subunit is regulated by O2-dependent hydroxylation of proline residue 402, 564, or both, by prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation; and O2-dependent hydroxylation of asparagine residue 803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein (p300) and CREB binding protein (CBP). The hydroxylation reactions, which utilize O2 and α-ketoglutarate as substrates and generate CO2 and succinate as by-products, provide a mechanism by which changes in cellular oxygenation are transduced to the nucleus as changes in HIF-1 activity. Hydroxylase activity is inhibited in the presence of low concentrations of O2, high concentrations of tricarboxylic acid cycle intermediates (isocitrate, oxaloacetate, succinate, or fumarate), or chelators of Fe(II). Receptor for activated C kinase 1 (RACK1) competes with heat shock protein 90 (HSP90) for binding to HIF-1α and mediates O2-independent ubiquitination and proteasomal degradation. A growing number of proteins and small molecules have been identified that regulate HIF-1 activity by modulating the physical or functional interaction of PHD2, VHL, FIH-1, RACK1, or HSP90 with HIF-1α.

[1]  M. Simon,et al.  The N-Terminal Transactivation Domain Confers Target Gene Specificity of Hypoxia-inducible Factors HIF-1α and HIF-2α , 2007 .

[2]  G. Semenza Evaluation of HIF-1 inhibitors as anticancer agents. , 2007, Drug discovery today.

[3]  G. Semenza,et al.  Spermidine/Spermine-N1-Acetyltransferase 2 Is an Essential Component of the Ubiquitin Ligase Complex That Regulates Hypoxia-inducible Factor 1α* , 2007, Journal of Biological Chemistry.

[4]  I. Hassinen,et al.  Inhibition of Hypoxia-inducible Factor (HIF) Hydroxylases by Citric Acid Cycle Intermediates , 2007, Journal of Biological Chemistry.

[5]  N. Oldham,et al.  Structural and Mechanistic Studies on the Inhibition of the Hypoxia-inducible Transcription Factor Hydroxylases by Tricarboxylic Acid Cycle Intermediates* , 2007, Journal of Biological Chemistry.

[6]  J. Pouysségur,et al.  Harnessing the hypoxia-inducible factor in cancer and ischemic disease. , 2007, Biochemical pharmacology.

[7]  R. Cole,et al.  RACK1 Competes with HSP90 for Binding to HIF-1α and is Required for O2-independent and HSP90 Inhibitor-induced Degradation of HIF-1α , 2007 .

[8]  L. Chodosh,et al.  Differential Regulation of the Transcriptional Activities of Hypoxia-Inducible Factor 1 Alpha (HIF-1α) and HIF-2α in Stem Cells , 2006, Molecular and Cellular Biology.

[9]  J. Pouysségur,et al.  The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. , 2006, Cancer research.

[10]  D. Peet,et al.  Regulation of HIF: asparaginyl hydroxylation. , 2006, Novartis Foundation symposium.

[11]  C. Dalgard,et al.  Reversible Inactivation of HIF-1 Prolyl Hydroxylases Allows Cell Metabolism to Control Basal HIF-1* , 2005, Journal of Biological Chemistry.

[12]  J. Pouysségur,et al.  Arrest-defective-1 Protein, an Acetyltransferase, Does Not Alter Stability of Hypoxia-inducible Factor (HIF)-1α and Is Not Induced by Hypoxia or HIF* , 2005, Journal of Biological Chemistry.

[13]  P. Schumacker,et al.  Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. , 2005, Cell metabolism.

[14]  P. Schumacker,et al.  Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. , 2005, Cell metabolism.

[15]  Massimo Zeviani,et al.  Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. , 2005, Cell metabolism.

[16]  E. Messing,et al.  VHL protein‐interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF‐1α , 2005, EMBO reports.

[17]  G. Semenza,et al.  Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. , 2005, Blood.

[18]  David G. Watson,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[19]  G. Semenza,et al.  Hydroxylation of HIF-1: oxygen sensing at the molecular level. , 2004, Physiology.

[20]  D. Bowtell,et al.  Siah2 Regulates Stability of Prolyl-Hydroxylases, Controls HIF1α Abundance, and Modulates Physiological Responses to Hypoxia , 2004, Cell.

[21]  J. Pouysségur,et al.  HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia , 2003, The EMBO journal.

[22]  Moon-Kyoung Bae,et al.  Regulation and Destabilization of HIF-1α by ARD1-Mediated Acetylation , 2002, Cell.

[23]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[24]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[25]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[27]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[28]  R. Conaway,et al.  Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[30]  J. Caro,et al.  Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. , 1997, The Journal of biological chemistry.

[31]  S. McKnight,et al.  Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. , 1997, Genes & development.

[32]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.