An update rule and a convergence result for a penalty function method

We use a primal-dual scheme to devise a new update rule for a penalty function method applicable to general optimization problems, including nonsmooth and nonconvex ones. The update rule we introduce uses dual information in a simple way. Numerical test problems show that our update rule has certain advantages over the classical one. We study the relationship between exact penalty parameters and dual solutions. Under the differentiability of the dual function at the least exact penalty parameter, we establish convergence of the minimizers of the sequential penalty functions to a solution of the original problem. Numerical experiments are then used to illustrate some of the theoretical results.

[1]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[2]  Xiaoqi Yang,et al.  Lagrange-type Functions in Constrained Non-Convex Optimization , 2003 .

[3]  Marc Teboulle,et al.  Nonlinear rescaling and proximal-like methods in convex optimization , 1997, Math. Program..

[4]  Xiaoqi Yang,et al.  Lagrange-Type Functions in Constrained Optimization , 2003 .

[5]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[6]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[7]  Adil M. Bagirov,et al.  Penalty functions with a small penalty parameter , 2002, Optim. Methods Softw..

[8]  C. Yalçin Kaya,et al.  On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian* , 2006, J. Glob. Optim..

[9]  Igor Griva,et al.  Primal-dual nonlinear rescaling method with dynamic scaling parameter update , 2006, Math. Program..

[10]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[11]  Rafail N. Gasimov,et al.  Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming , 2002, J. Glob. Optim..

[12]  G. Di Pillo,et al.  Exact Penalty Methods , 1994 .

[13]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[14]  A. Fiacco,et al.  Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993 ∗ , 1995 .

[15]  Hanif D. Sherali,et al.  A variable target value method for nondifferentiable optimization , 2000, Oper. Res. Lett..

[16]  H. Sherali,et al.  On the choice of step size in subgradient optimization , 1981 .

[17]  Roman A. Polyak,et al.  Nonlinear rescaling vs. smoothing technique in convex optimization , 2002, Math. Program..