Phantom of the Hartle–Hawking instanton: connecting inflation with dark energy

[1]  R. Saitô,et al.  Coleman-de Luccia instanton in dRGT massive gravity , 2013, 1312.0709.

[2]  Dong-han Yeom,et al.  Toward inflation models compatible with the no-boundary proposal , 2013, 1311.6872.

[3]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[4]  E. Stewart,et al.  Euclidean quantum gravity and stochastic inflation , 2012, 1208.6563.

[5]  Dong-han Yeom,et al.  No-boundary measure and preference for large e-foldings in multi-field inflation , 2012, 1207.0359.

[6]  R. Saitô,et al.  Hawking-Moss instanton in nonlinear massive gravity , 2012, 1210.6224.

[7]  Dong-han Yeom,et al.  The no-boundary measure in string theory: applications to moduli stabilization, flux compactification and cosmic landscape , 2012, 1203.0112.

[8]  Taotao Qiu THEORETICAL ASPECTS OF QUINTOM MODELS , 2010, 1002.3971.

[9]  J. Xia,et al.  Quintom Cosmology: theoretical implications and observations , 2009, 0909.2776.

[10]  J. Hartle,et al.  Classical universes of the no-boundary quantum state , 2008, 0803.1663.

[11]  J. Hartle,et al.  No-boundary measure of the universe. , 2007, Physical review letters.

[12]  Taotao Qiu,et al.  Avoiding the Big-Rip Jeopardy in a Quintom Dark Energy Model with Higher Derivatives , 2006, astro-ph/0603824.

[13]  Mingzhe Li,et al.  A single scalar field model of dark energy with equation of state crossing −1 , 2005, hep-ph/0503268.

[14]  Xiao-Fei Zhang,et al.  TWO-FIELD MODELS OF DARK ENERGY WITH EQUATION OF STATE ACROSS -1 , 2005, astro-ph/0501652.

[15]  Yuan-zhong Zhang,et al.  Cosmological evolution of a quintom model of dark energy , 2004, astro-ph/0410654.

[16]  Xinmin Zhang,et al.  Dark energy constraints from the cosmic age and supernova , 2004, astro-ph/0404224.

[17]  S. Jeon,et al.  The Phantom menaced: Constraints on low-energy effective ghosts , 2003, hep-ph/0311312.

[18]  M. Kamionkowski,et al.  Phantom energy: dark energy with w <--1 causes a cosmic doomsday. , 2003, Physical review letters.

[19]  A. Guth,et al.  Inflationary spacetimes are incomplete in past directions. , 2003, Physical review letters.

[20]  S. Carroll,et al.  Can the dark energy equation - of - state parameter w be less than -1? , 2003, astro-ph/0301273.

[21]  A. Guth,et al.  Inflationary spacetimes are not past-complete , 2001, gr-qc/0110012.

[22]  A. Barvinsky,et al.  Quantum origin of the early inflationary universe , 1996, gr-qc/9612004.

[23]  Kamenshchik,et al.  Tunneling geometries: Analyticity, unitarity, and instantons in quantum cosmology. , 1994, Physical review. D, Particles and fields.

[24]  J. Hartle,et al.  Wave functions constructed from an invariant sum over histories satisfy constraints. , 1991, Physical review. D, Particles and fields.

[25]  J. Hartle,et al.  Integration contours for the no-boundary wave function of the universe. , 1990, Physical review. D, Particles and fields.

[26]  J. Hartle,et al.  Wave Function of the Universe , 1983 .

[27]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[28]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[29]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[30]  Stephen W. Hawking,et al.  Path Integral Derivation of Black Hole Radiance , 1976 .

[31]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .