Computing Tjurina stratifications of $$\mu $$μ-constant deformations via parametric local cohomology systems

Algebraic local cohomology classes associated with parametric semi-quasihomogeneous hypersurface isolated singularities are considered in the context of symbolic computation. The motivations for this paper are computer calculations of complete lists of Tjurina numbers of semi-quasihomogeneous polynomials with isolated singularity. A new algorithm, that utilizes parametric local cohomology systems, is proposed to compute Tjurina stratifications associated with $$\mu $$μ-constant deformations of weighted homogeneous isolated singularities. The resulting algorithm gives in particular a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology systems. An efficient algorithm of computing parametric standard bases of relevant ideals is also given as an application of parametric local cohomology systems.

[1]  S. Tajima,et al.  Standard bases and algebraic local cohomology for zero dimensional ideals , 2009 .

[2]  Hans Schönemann,et al.  Standard bases, syzygies and their implementation in SINGULAR , 1994 .

[3]  S. Yau,et al.  Classification of isolated hypersurface singularities by their moduli algebras , 1982 .

[4]  Xiao-Shan Gao,et al.  Solving parametric algebraic systems , 1992, ISSAC '92.

[5]  Hans Grauert,et al.  Über die deformation isolierter singularitäten analytischer mengen , 1971 .

[6]  Masayuki Noro,et al.  Risa/Asir—a computer algebra system , 1992, ISSAC '92.

[7]  A. Grothendieck Théorèmes de dualité pour les faisceaux algébriques cohérents , 1958 .

[8]  William Y. Sit An Algorithm for Solving Parametric Linear Systems , 1992, J. Symb. Comput..

[9]  Shinichi Tajima,et al.  An Algorithm for Computing Tjurina Stratifications of μ-Constant Deformations by Using Local Cohomology Classes with Parameters , 2014, ICMS.

[10]  Shinichi Tajima,et al.  On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases , 2014, ISSAC.

[11]  Shinichi Tajima,et al.  Annihilating ideals for an algebraic local cohomology class , 2009, J. Symb. Comput..

[12]  Bernd Martin,et al.  The Kernel of the Kodaira-Spencer Map of the Versal µ-Constant Deformation of an Irreducible Plane Curve Singularity with C^r-Action , 1989, J. Symb. Comput..

[13]  Hans Schönemann,et al.  On an implementation of standard bases and syzygies in SINGULAR , 1996, Applicable Algebra in Engineering, Communication and Computing.

[14]  S. Yau,et al.  Criterion for biholomorphic equivalence of isolated hypersurface singularities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Shinichi Tajima,et al.  Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals , 2015, J. Symb. Comput..

[16]  Vladimir I. Arnold,et al.  NORMAL FORMS OF FUNCTIONS IN NEIGHBOURHOODS OF DEGENERATE CRITICAL POINTS , 1974 .

[17]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[18]  S. Tajima,et al.  Algebraic Local Cohomology Classes Attached to Quasi-Homogeneous Hypersurface Isolated Singularities , 2005 .

[19]  Kyoji Saito,et al.  Quasihomogene isolierte Singularitäten von Hyperflächen , 1971 .