Computing Tjurina stratifications of $$\mu $$μ-constant deformations via parametric local cohomology systems
暂无分享,去创建一个
[1] S. Tajima,et al. Standard bases and algebraic local cohomology for zero dimensional ideals , 2009 .
[2] Hans Schönemann,et al. Standard bases, syzygies and their implementation in SINGULAR , 1994 .
[3] S. Yau,et al. Classification of isolated hypersurface singularities by their moduli algebras , 1982 .
[4] Xiao-Shan Gao,et al. Solving parametric algebraic systems , 1992, ISSAC '92.
[5] Hans Grauert,et al. Über die deformation isolierter singularitäten analytischer mengen , 1971 .
[6] Masayuki Noro,et al. Risa/Asir—a computer algebra system , 1992, ISSAC '92.
[7] A. Grothendieck. Théorèmes de dualité pour les faisceaux algébriques cohérents , 1958 .
[8] William Y. Sit. An Algorithm for Solving Parametric Linear Systems , 1992, J. Symb. Comput..
[9] Shinichi Tajima,et al. An Algorithm for Computing Tjurina Stratifications of μ-Constant Deformations by Using Local Cohomology Classes with Parameters , 2014, ICMS.
[10] Shinichi Tajima,et al. On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases , 2014, ISSAC.
[11] Shinichi Tajima,et al. Annihilating ideals for an algebraic local cohomology class , 2009, J. Symb. Comput..
[12] Bernd Martin,et al. The Kernel of the Kodaira-Spencer Map of the Versal µ-Constant Deformation of an Irreducible Plane Curve Singularity with C^r-Action , 1989, J. Symb. Comput..
[13] Hans Schönemann,et al. On an implementation of standard bases and syzygies in SINGULAR , 1996, Applicable Algebra in Engineering, Communication and Computing.
[14] S. Yau,et al. Criterion for biholomorphic equivalence of isolated hypersurface singularities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[15] Shinichi Tajima,et al. Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals , 2015, J. Symb. Comput..
[16] Vladimir I. Arnold,et al. NORMAL FORMS OF FUNCTIONS IN NEIGHBOURHOODS OF DEGENERATE CRITICAL POINTS , 1974 .
[17] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .
[18] S. Tajima,et al. Algebraic Local Cohomology Classes Attached to Quasi-Homogeneous Hypersurface Isolated Singularities , 2005 .
[19] Kyoji Saito,et al. Quasihomogene isolierte Singularitäten von Hyperflächen , 1971 .