An X- and Ku-Band Wideband Recursive Receiver MMIC With Gain-Reuse

This paper presents an 8-18 GHz wideband receiver with recursive super-heterodyne topology. A multi-feedback technology is utilized in the LNA design for the input matching over the wide frequency range in X- and Ku-band. In order to save power, both the RF and IF signals share a tunable transconductance stage. The IF output of the first mixer is fed back into the tunable input stage for IF amplification in a recursive manner, which significantly enhances the gain tuning without increasing the power. The wideband receiver MMIC is implemented in a 0.13 SiGe BiCMOS technology and achieves a 6.7-7.8 dB noise figure. The receiver average gain over the frequency range is measured as 53 dB maximum gain with 20 dB continual tuning and 36 dB discrete tuning. The average output P1dB over the frequency range is measured as 10 dBm at maximum gain. The receiver dissipates only 180 mW with a 2.2 V power supply.

[1]  Kuo-Liang Deng,et al.  A 0.6-22-GHz broadband CMOS distributed amplifier , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[2]  Richard C. Jaeger,et al.  On the performance of the differential cascode amplifier , 1973 .

[3]  R. Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[4]  Jongsoo Lee,et al.  Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[5]  Kuo-Liang Deng,et al.  A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[6]  Yo-Sheng Lin,et al.  A 2.5-dB NF 3.1–10.6-GHz CMOS UWB LNA with small group-delay-variation , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[7]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[8]  R. Castello,et al.  A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner , 2005, IEEE Journal of Solid-State Circuits.

[9]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[10]  P. Sivonen,et al.  A 1.2-V RF front-end with on-chip VCO for PCS 1900 direct conversion receiver in 0.13-/spl mu/m CMOS , 2006, IEEE Journal of Solid-State Circuits.

[11]  Junghwan Han,et al.  Recursive Receiver Down-Converters With Multiband Feedback and Gain-Reuse , 2008, IEEE Journal of Solid-State Circuits.

[12]  Milton Feng,et al.  Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier , 2004 .

[13]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[14]  A. Ismail,et al.  A 3 to 10 GHz LNA using a wideband LC-ladder matching network , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[15]  B. Razavi,et al.  A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider , 2008, IEEE Journal of Solid-State Circuits.

[16]  S. Lee,et al.  A WiMedia-Compliant UWB Transceiver in 65nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  P. Chao,et al.  A 1-17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks , 2002 .

[18]  Yin Shi,et al.  A multifunction transceiver RFIC for 802.11a/b/g WLAN and DVB-H applications , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[19]  Yuan Lu,et al.  A 1.8-3.1 dB noise figure (3-10 GHz) SiGe HBT LNA for UWB applications , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[20]  Gabriel M. Rebeiz,et al.  An X- and Ku-Band 8-Element Phased-Array Receiver in 0.18-$\mu{\hbox{m}}$ SiGe BiCMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[21]  A.R. Barnes,et al.  A 2-18 GHz wideband high dynamic range receiver MMIC , 2002, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280).

[22]  Kwyro Lee,et al.  A 13 dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[23]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[24]  Ranjit Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS , 2004, CICC.

[25]  Chinchun Meng,et al.  Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops , 2002 .

[26]  Howard C. Luong,et al.  A 0.8GHz–10.6GHz SDR low-noise amplifier in 0.13-μm CMOS , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[27]  C.-H. Lee,et al.  A very low power SiGe LNA for UWB application , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[28]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[29]  Peter Ashburn,et al.  Silicon‐Germanium Heterojunction Bipolar Transistors , 2004 .

[30]  Richard C. Jaeger,et al.  An 8–18GHz 0.18W wideband recursive receiver MMIC with gain-reuse , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[31]  K. Washio,et al.  A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25- /spl mu/m SiGe BiCMOS technology , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[32]  M. Chen,et al.  A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS , 2009, IEEE Microwave and Wireless Components Letters.

[33]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.