Optimal errors-in-variables filtering

This paper deals with optimal (minimal variance) filtering in an errors-in-variables framework. Differently from many other contexts, errors-in-variables models treat all variables in a symmetric way (no partition of the variables into inputs and outputs is required) and assume additive noise on all the variables. The filtering technique described in this paper can be easily implemented in a recursive way and does not require the use of a Riccati equation at every update. The results of Monte Carlo simulations have shown the effectiveness and consistency of the approach.

[1]  Paolo Guidoni,et al.  Frisch filtering of noisy signals , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[2]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[3]  Manfred Deistler,et al.  Linear errors-in-variables models , 1984 .

[4]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[5]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[6]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[7]  I. Rhodes A tutorial introduction to estimation and filtering , 1971 .

[8]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[9]  B. Anderson,et al.  Identifiability in dynamic errors-in-variables models , 1983, The 22nd IEEE Conference on Decision and Control.

[10]  C. Heij,et al.  Global total least squares modeling of multivariable time series , 1995, IEEE Trans. Autom. Control..

[11]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[12]  李幼升,et al.  Ph , 1989 .

[13]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[14]  Michel Barlaud,et al.  Unbiased parameter estimation of nonstationary signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[15]  Torsten Söderström,et al.  Identification Methods of Dynamic Systems in Presence of Input Noise , 2000 .

[16]  Umberto Soverini,et al.  Algorithms for optimal errors-in-variables filtering , 2003, Syst. Control. Lett..

[17]  Chun-Bo Feng,et al.  Unbiased parameter estimation of linear systems in the presence of input and output noise , 1989 .

[18]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Roberto Guidorzi,et al.  Invariants and canonical forms for systems structural and parametric identification , 1981, Autom..

[20]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .