A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land

Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm. When retrieving AOD from satellite platforms, determining surface contributions is a major challenge. In the MODIS DT algorithm, surface signals in the visible wavelengths are estimated based on the relationships between visible channels and shortwave infrared (SWIR) near the 2.1 µm channel. However, the CAI only has a 1.6 µm band to cover the SWIR wavelengths. To resolve the difficulties in determining surface reflectance caused by the lack of 2.1 μm band data, we attempted to analyze the relationship between reflectance at 1.6 µm and at 2.1 µm. We did this using the MODIS surface reflectance product and then connecting the reflectances at 1.6 µm and the visible bands based on the empirical relationship between reflectances at 2.1 µm and the visible bands. We found that the reflectance relationship between 1.6 µm and 2.1 µm is typically dependent on the vegetation conditions, and that reflectances at 2.1 µm can be parameterized as a function of 1.6 µm reflectance and the Vegetation Index (VI). Based on our experimental results, an Aerosol Free Vegetation Index (AFRI2.1)-based regression function connecting the 1.6 µm and 2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), the 2.1 µm reflectance derived by our method has an extremely high correlation with the true 2.1 µm reflectance (r-value = 0.928). Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a CAI-applicable approach that uses AFRI2.1 and the scattering angle to account for the visible surface signals was proposed. It was then applied to the CAI sensor for AOD retrieval; the retrievals were validated by comparisons with ground-level measurements from Aerosol Robotic Network (AERONET) sites. Validations show that retrievals from the CAI have high agreement with the AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope of ± (0.1 + 15% AODAERONET).

[1]  Junsheng Li,et al.  MODIS surface reflectance product (MOD09) validation for typical inland waters in China , 2014, Asia-Pacific Environmental Remote Sensing.

[2]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[3]  Lin Chen,et al.  Retrieval and Validation of Atmospheric Aerosol Optical Depth From AVHRR Over China , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Muhammad Bilal,et al.  Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia , 2016, Remote. Sens..

[5]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[6]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[7]  Maria João Costa,et al.  Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula , 2014 .

[8]  Huili Gong,et al.  Aerosol type over east Asian retrieval using total and polarized remote Sensing , 2013 .

[9]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[10]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[11]  Zhongyi Sun,et al.  A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data , 2016, Remote. Sens..

[12]  Didier Tanré,et al.  Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis , 2015 .

[13]  Jia Zong,et al.  Algorithm Theoretical Basis , 1999 .

[14]  Xin Jiang,et al.  Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area , 2007 .

[15]  Christian Bernhofer,et al.  Validating MODIS land surface reflectance products using ground-measured reflectance spectra – a case study in semi-arid grassland in Inner Mongolia, China , 2014 .

[16]  Zhengqiang Li,et al.  Retrieval of Aerosol Fine-Mode Fraction from Intensity and Polarization Measurements by PARASOL over East Asia , 2016, Remote. Sens..

[17]  A. Hauser,et al.  Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe , 2010 .

[18]  Weiguo Jiang,et al.  Aerosol retrieval with satellite image and correlation analyses between aerosol distribution and urban underlaying surface , 2012 .

[19]  Hartmut Boesch,et al.  Impact of Aerosol Property on the Accuracy of a CO2 Retrieval Algorithm from Satellite Remote Sensing , 2016, Remote. Sens..

[20]  Michael D. King,et al.  Sensitivity of off-nadir zenith angles to correlation between visible and near-infrared reflectance for use in remote sensing of aerosol over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[22]  John P. Burrows,et al.  Remote sensing of aerosols over snow using infrared AATSR observations , 2011 .

[23]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[24]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[25]  Peter R. J. North,et al.  Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Yong Xue,et al.  Retrieval of aerosol optical depth over land surfaces from AVHRR data , 2013 .

[27]  Alexei Lyapustin,et al.  A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States , 2011 .

[28]  Lin Sun,et al.  Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images , 2015, Remote. Sens..

[29]  A. Karnieli,et al.  AFRI — aerosol free vegetation index , 2001 .

[30]  Sachchida N. Tripathi,et al.  Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital , 2012 .

[31]  Alexei I. Lyapustin Three-dimensional effects in the remote sensing of surface albedo , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[33]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[34]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[35]  Yoram J. Kaufman,et al.  Assessing vegetation condition in the presence of biomass burning smoke by applying the Aerosol‐free Vegetation Index (AFRI) on MODIS images , 2006 .

[36]  Abdul Basith,et al.  Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV) , 2019 .

[37]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[38]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[39]  Lorraine A. Remer,et al.  A surface reflectance scheme for retrieving aerosol optical depth over urbansurfaces in MODIS Dark Target retrieval algorithm , 2016 .

[40]  Xiaoxiong Xiong,et al.  Validation of MODIS aerosol optical depth product over China using CARSNET measurements , 2011 .

[41]  Lorraine Remer,et al.  Angular and seasonal variation of spectral surface reflectance ratios: implications for the remote sensing of aerosol over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[42]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[43]  Jun Wang,et al.  Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China , 2010 .

[44]  Satoru Fukuda,et al.  New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO‐Cloud and Aerosol Imager , 2013 .

[45]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[46]  Alexei Lyapustin,et al.  Aerosol optical depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States , 2012 .

[47]  V. Soufflet,et al.  Remote sensing of aerosols over boreal forest and lake water from AVHRR data , 1997 .

[48]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[49]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[50]  Gin-Rong Liu,et al.  Comparison of the NDVI, ARVI and AFRI Vegetation Index, Along with Their Relations with the AOD Using SPOT 4 Vegetation Data , 2004 .

[51]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[52]  Qinhuo Liu,et al.  Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data , 2010 .

[53]  Robert E. Holz,et al.  Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance , 2015 .

[54]  Marion Schroedter-Homscheidt,et al.  Improvements of synergetic aerosol retrieval for ENVISAT , 2008 .

[55]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[56]  D. Jacob,et al.  Mapping annual mean ground‐level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States , 2004 .

[57]  H. Le Treut,et al.  Greenhouse Gases, Aerosols and Reducing Future Climate Uncertainties , 2012, Surveys in Geophysics.