Raman spectroscopy of graphene and carbon nanotubes

This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends.

[1]  W. Marsden I and J , 2012 .

[2]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[3]  P. Klimov,et al.  Imaging stacking order in few-layer graphene. , 2010, Nano letters.

[4]  A. Jorio,et al.  The Kataura plot for single wall carbon nanotubes on top of crystalline quartz , 2010 .

[5]  Mildred S Dresselhaus,et al.  Perspectives on the 2010 Nobel Prize in physics for graphene. , 2010, ACS nano.

[6]  Lukas Novotny,et al.  Modulating the electronic properties along carbon nanotubes via tube-substrate interaction. , 2010, Nano letters.

[7]  Klaus von Klitzing,et al.  Raman scattering at pure graphene zigzag edges. , 2010, Nano letters.

[8]  Achim Hartschuh,et al.  Tip-enhanced Raman spectroscopic imaging of localized defects in carbon nanotubes , 2010 .

[9]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[10]  M. M. Lucchese,et al.  Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder , 2010 .

[11]  M. Dresselhaus,et al.  Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes , 2010 .

[12]  Ado Jorio,et al.  Raman study of ion-induced defects in N-layer graphene , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  M. Dresselhaus,et al.  Tunable band gap in hydrogenated quasi-free-standing graphene. , 2010, Nano letters.

[14]  G. Schmid The Nature of Nanotechnology , 2010 .

[15]  M. Dresselhaus,et al.  Soliton trap in strained graphene nanoribbons , 2010, 1007.0086.

[16]  M. Dresselhaus,et al.  Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes , 2010, 1004.5473.

[17]  P. Ajayan,et al.  Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. , 2010, Nano letters.

[18]  M. M. Lucchese,et al.  Quantifying ion-induced defects and Raman relaxation length in graphene , 2010 .

[19]  V. Kravets,et al.  Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption , 2010, Physical Review B.

[20]  M. Dresselhaus,et al.  Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. , 2010, Nanoscale.

[21]  A. Jorio,et al.  Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes , 2010 .

[22]  M. Dresselhaus,et al.  Optical properties of carbon nanotubes and nanographene , 2010 .

[23]  Jing Kong,et al.  Can graphene be used as a substrate for Raman enhancement? , 2010, Nano letters.

[24]  Kenji Hata,et al.  Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination , 2010 .

[25]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[26]  T. Ando Environment Effects on Excitons in Semiconducting Carbon Nanotubes , 2010 .

[27]  M. Dresselhaus,et al.  Perspectives on carbon nanotubes and graphene Raman spectroscopy. , 2010, Nano letters.

[28]  R. Saito,et al.  Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy , 2010 .

[29]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[30]  M. Dresselhaus,et al.  The effect of environment on the radial breathing mode of supergrowth single wall carbon nanotubes , 2009 .

[31]  A. Jorio,et al.  Boron, nitrogen and phosphorous substitutionally doped single‐wall carbon nanotubes studied by resonance Raman spectroscopy , 2009 .

[32]  G. Compagnini,et al.  Ion irradiation and defect formation in single layer graphene , 2009 .

[33]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[34]  Lukas Novotny,et al.  Tip‐enhanced Raman spectroscopy of carbon nanotubes , 2009 .

[35]  J. J. Gracio,et al.  Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth , 2009 .

[36]  A. Jorio,et al.  Diameter Dependence of Dielectric Constant for the Excitonic Transition Energy of Single‐Wall Carbon Nanotubes , 2010 .

[37]  Jin Sung Park,et al.  Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes , 2009 .

[38]  L. Kavan,et al.  Electrochemical charging of individual single-walled carbon nanotubes. , 2009, ACS nano.

[39]  Shuichi Murakami,et al.  Kohn anomalies in graphene nanoribbons , 2009, 0907.2475.

[40]  S. Cronin,et al.  Gate voltage controllable non-equilibrium and non-ohmic behavior in suspended carbon nanotubes. , 2009, Nano letters.

[41]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[42]  D. Basko,et al.  Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene , 2009, 0906.0975.

[43]  A. Reina,et al.  Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces , 2009, 0906.2236.

[44]  J. Rottler,et al.  Faceting at the step flow threshold in epitaxial growth on patterned surfaces , 2009 .

[45]  B G Sumpter,et al.  Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. , 2009, Nano letters.

[46]  T. Michel,et al.  Effect of rotational stacking faults on the Raman spectra of folded graphene , 2009 .

[47]  Hugen Yan,et al.  Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[48]  M. Lazzeri,et al.  Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions , 2009, Physical Review B.

[49]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[50]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[51]  Jin Sung Park,et al.  G' band Raman spectra of single, double and triple layer graphene , 2009 .

[52]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[53]  R. Saito,et al.  Surface and interference coenhanced Raman scattering of graphene. , 2009, ACS nano.

[54]  M. Dresselhaus,et al.  Softening of the radial breathing mode in metallic carbon nanotubes. , 2009, Physical review letters.

[55]  K. Uosaki,et al.  Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy. , 2009, Nano letters.

[56]  P. Eklund,et al.  Probing graphene edges via Raman scattering. , 2009, ACS nano.

[57]  S. Cronin,et al.  Direct observation of Born-Oppenheimer approximation breakdown in carbon nanotubes. , 2009, Nano letters.

[58]  L. Kavan,et al.  Large Variety of Behaviors for the Raman G′ Mode of Single Walled Carbon Nanotubes upon Electrochemical Gating Arising from Different (n,m) of Individual Nanotubes , 2009 .

[59]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[60]  D. L. Mafra,et al.  Group theory analysis of electrons and phonons in N-layer graphene systems , 2008, 0812.1293.

[61]  D. Teweldebrhan,et al.  Modification of graphene properties due to electron-beam irradiation , 2008, 0812.0571.

[62]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[63]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[64]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[65]  S. Pisana,et al.  Phonon renormalization in doped bilayer graphene , 2008, 0807.1631.

[66]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[67]  Jing Kong,et al.  Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates , 2008 .

[68]  M. Dresselhaus,et al.  Chirality-dependent frequency shift of radial breathing mode in metallic carbon nanotubes , 2008, 0810.3968.

[69]  D. Nezich,et al.  Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. , 2008, Nano letters.

[70]  A. Jorio,et al.  Electron and phonon renormalization near charged defects in carbon nanotubes. , 2008, Nature materials.

[71]  K. Hata,et al.  Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy , 2008 .

[72]  A. Jorio,et al.  The two peaks G′ band in carbon nanotubes , 2008 .

[73]  A. Jorio,et al.  The role of environmental effects on the optical transition energies and radial breathing mode frequency of single wall carbon nanotubes , 2008 .

[74]  M. Endo,et al.  A detailed comparison of CVD grown and precursor based DWCNTs , 2008 .

[75]  L. Kavan,et al.  Competition between the spring force constant and the phonon energy renormalization in electrochemically doped semiconducting single-walled carbon nanotubes. , 2008, Nano letters.

[76]  Jean-Christophe Charlier,et al.  Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes , 2008 .

[77]  H. Petek,et al.  Coherent phonon anisotropy in aligned single-walled carbon nanotubes. , 2008, Nano letters.

[78]  Roya Maboudian,et al.  Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). , 2008, Physical review letters.

[79]  D. Elias,et al.  Observation of distinct electron-phonon couplings in gated bilayer graphene. , 2008, Physical review letters.

[80]  Francesco Mauri,et al.  Impact of the electron-electron correlation on phonon dispersion:Failure of LDA and GGA DFT functionals in graphene and graphite. , 2008, 0808.2285.

[81]  L. Wirtz,et al.  Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene , 2008, 0808.1467.

[82]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[83]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[84]  A. Kudelski Analytical applications of Raman spectroscopy. , 2008, Talanta.

[85]  Yihong Wu,et al.  Raman Studies of Monolayer Graphene: The Substrate Effect , 2008 .

[86]  K. Hata,et al.  Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403 , 2008 .

[87]  D. Basko Resonant low-energy electron scattering on short-range impurities in graphene , 2008, 0806.2785.

[88]  J. Zimmermann,et al.  Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model , 2008, 0806.2845.

[89]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[90]  A. Reina,et al.  Geometrical approach for the study of G band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite , 2008 .

[91]  Zhenhua Ni,et al.  Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy , 2008, 0805.1771.

[92]  A. Ismach,et al.  Self-organized nanotube serpentines. , 2008, Nature nanotechnology.

[93]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[94]  Lukas Novotny,et al.  Exciton energy transfer in pairs of single-walled carbon nanotubes. , 2008, Nano letters.

[95]  M. Dresselhaus,et al.  Curvature-induced optical phonon frequency shift in metallic carbon nanotubes , 2008, 0803.3847.

[96]  T. Ando,et al.  Magneto-optical properties of multilayer graphene , 2008, 0803.3023.

[97]  Klaus Müllen,et al.  Two-dimensional graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[98]  Steven G. Louie,et al.  Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials , 2008, 0803.0306.

[99]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[100]  A. Jauho,et al.  Graphene antidot lattices: designed defects and spin qubits. , 2008, Physical review letters.

[101]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[102]  F. Simon,et al.  Raman scattering from double‐walled carbon nanotubes , 2008 .

[103]  L. Wirtz,et al.  Electron-electron correlation in graphite: a combined angle-resolved photoemission and first-principles study. , 2008, Physical review letters.

[104]  Jun Yan,et al.  Observation of anomalous phonon softening in bilayer graphene. , 2007, Physical review letters.

[105]  L. Wirtz,et al.  Ultrafast Electron-Phonon Decoupling in Graphite , 2007, 0712.1879.

[106]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[107]  C. Beenakker Andreev reflection and Klein tunneling in graphene , 2007, 0710.3848.

[108]  C. Beenakker,et al.  Correspondence between Andreev reflection and Klein tunneling in bipolar graphene , 2007, 0710.1309.

[109]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[110]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[111]  D. L. Mafra,et al.  Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering , 2007 .

[112]  K. Fukui,et al.  Structures and electronic properties of surface/edges of nanodiamond and nanographite , 2007 .

[113]  M. Dresselhaus,et al.  Discontinuity in the family pattern of single-wall carbon nanotubes , 2007 .

[114]  M. Dresselhaus,et al.  Chirality dependence of many body effects of single wall carbon nanotubes , 2007 .

[115]  P. Avouris,et al.  Doping and phonon renormalization in carbon nanotubes. , 2007, Nature nanotechnology.

[116]  S. Reich,et al.  Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly. , 2007, Physical review letters.

[117]  M. S. Dresselhaus,et al.  Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007 , 2007 .

[118]  K. Novoselov,et al.  Raman Fingerprint of Charged Impurities in Graphene , 2007, 0709.2566.

[119]  J. Nilsson,et al.  Probing the electronic structure of bilayer graphene by Raman scattering , 2007, 0708.1345.

[120]  H. Son,et al.  Finite length effects in DNA-wrapped carbon nanotubes , 2007 .

[121]  A. Geim,et al.  Graphene: Exploring carbon flatland , 2007 .

[122]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[123]  D. Basko Effect of inelastic collisions on multiphonon Raman scattering in graphene , 2007, 0705.1530.

[124]  Guohong Li,et al.  Observation of Landau levels of Dirac fermions in graphite , 2007, 0705.1185.

[125]  M. Dresselhaus,et al.  Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes , 2007 .

[126]  C. Beenakker,et al.  Reentrance effect in a graphene n-p-n junction coupled to a superconductor , 2007, 0704.2487.

[127]  T. Mizutani,et al.  Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials , 2007, 0704.1380.

[128]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[129]  J. Maultzsch,et al.  Variable electron-phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering. , 2007, Physical review letters.

[130]  C. N. Lau,et al.  Phase-Coherent Transport in Graphene Quantum Billiards , 2007, Science.

[131]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[132]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[133]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[134]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[135]  Sergei Tretiak,et al.  Third and fourth optical transitions in semiconducting carbon nanotubes. , 2007, Physical review letters.

[136]  T. Sato,et al.  Anomalous quasiparticle lifetime and strong electron-phonon coupling in graphite. , 2007, Physical review letters.

[137]  M. Dresselhaus,et al.  Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model , 2007 .

[138]  Jin Sung Park,et al.  Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes , 2007 .

[139]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[140]  J. Robertson,et al.  Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects , 2006, cond-mat/0611693.

[141]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[142]  T. Ando Role of the Aharonov-Bohm Phase in the Optical Properties of Carbon Nanotubes , 2007 .

[143]  S. Roche,et al.  High Magnetic Field Phenomena in Carbon Nanotubes , 2007 .

[144]  M. Terrones,et al.  Doped Carbon Nanotubes: Synthesis, Characterization and Applications , 2007 .

[145]  A. Hartschuh New Techniques for Carbon-Nanotube Study and Characterization , 2007 .

[146]  V. Crespi,et al.  Single-Wall Carbon Nanohorns and Nanocones , 2007 .

[147]  L. Kavan,et al.  Electrochemistry of Carbon Nanotubes , 2007 .

[148]  R. Saito,et al.  Excitonic States and Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes , 2007 .

[149]  Steven G. Louie,et al.  Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons , 2007 .

[150]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[151]  H. Dai,et al.  Carbon Nanotube Synthesis and Organization , 2007 .

[152]  G. Fleming,et al.  Ultrafast Spectroscopy of Carbon Nanotubes , 2007 .

[153]  Michael J. Biercuk,et al.  Electrical Transport in Single-Wall Carbon Nanotubes , 2007 .

[154]  T. Heinz Rayleigh Scattering Spectroscopy , 2007 .

[155]  J. Lefebvre,et al.  Photoluminescence: Science and Applications , 2007 .

[156]  M. Lazzeri,et al.  Nonadiabatic Kohn anomaly in a doped graphene monolayer. , 2006, Physical review letters.

[157]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[158]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[159]  Phaedon Avouris,et al.  Carbon nanotube optoelectronics , 2006 .

[160]  V. Zólyomi,et al.  Tube–tube interaction in double‐wall carbon nanotubes , 2006 .

[161]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[162]  Jin Sung Park,et al.  Raman resonance window of single-wall carbon nanotubes , 2006 .

[163]  M. Dresselhaus,et al.  Trigonal Anisotropy in Graphite and Carbon Nanotubes , 2006 .

[164]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[165]  Christian Thomsen,et al.  Resonant-Raman intensities and transition energies of the E 11 transition in carbon nanotubes , 2006 .

[166]  A. Martin,et al.  Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation , 2006 .

[167]  M. Dresselhaus,et al.  Review on the symmetry-related properties of carbon nanotubes , 2006 .

[168]  Jie Jiang,et al.  D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size , 2006 .

[169]  T. Ando,et al.  Optical Phonon Interacting with Electrons in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[170]  A. V. Fedorov,et al.  First direct observation of Dirac fermions in graphite , 2006, cond-mat/0608069.

[171]  G. Lanzani,et al.  Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes , 2006 .

[172]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[173]  S. Louie,et al.  Selection rules for one- and two-photon absorption by excitons in carbon nanotubes , 2006, cond-mat/0606777.

[174]  P. Eklund,et al.  Raman scattering from high-frequency phonons in supported n-graphene layer films. , 2006, Nano letters.

[175]  F. Peeters,et al.  Confined states and direction-dependent transmission in graphene quantum wells , 2006, cond-mat/0606558.

[176]  R. Smalley,et al.  Coherent lattice vibrations in single-walled carbon nanotubes. , 2006, Nano letters.

[177]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[178]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[179]  C. Beenakker Specular Andreev reflection in graphene. , 2006, Physical review letters.

[180]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[181]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[182]  M. Dresselhaus,et al.  Photoluminescence intensity of single-wall carbon nanotubes , 2006 .

[183]  V. Fal’ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006, cond-mat/0603624.

[184]  S. Louie,et al.  Diameter and chirality dependence of exciton properties in carbon nanotubes , 2006, cond-mat/0606474.

[185]  Lijun Wu,et al.  Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure , 2006, Science.

[186]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[187]  K. Fukui,et al.  Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy , 2006, cond-mat/0602378.

[188]  P. Lambin,et al.  Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes , 2006 .

[189]  Jie Jiang,et al.  Carbon nanotube population analysis from Raman and photoluminescence intensities , 2006 .

[190]  Jannik C. Meyer,et al.  RAMAN SPECTROSCOPY OF ISOLATED SINGLE-WALLED CARBON NANOTUBES , 2006 .

[191]  Jie Jiang,et al.  Electron-phonon matrix elements in single-wall carbon nanotubes , 2005 .

[192]  M. Dresselhaus,et al.  Cutting lines near the Fermi energy of single-wall carbon nanotubes , 2005 .

[193]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[194]  F. Simon,et al.  Fine structure of the radial breathing mode of double-wall carbon nanotubes , 2005, cond-mat/0508217.

[195]  Jannik C. Meyer,et al.  Raman modes of index-identified freestanding single-walled carbon nanotubes. , 2005, Physical review letters.

[196]  M. Dresselhaus,et al.  Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes , 2005 .

[197]  J. Maultzsch,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005, cond-mat/0505150.

[198]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[199]  D. Nezich,et al.  Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. , 2005, Physical review letters.

[200]  Un Jeong Kim,et al.  Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[201]  K. Fukui,et al.  Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy , 2005, cond-mat/0503472.

[202]  Tsuneya Ando,et al.  Theory of Electronic States and Transport in Carbon Nanotubes , 2005 .

[203]  M. Dresselhaus,et al.  Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes , 2005 .

[204]  Jie Jiang,et al.  Photoexcited electron relaxation processes in single-wall carbon nanotubes , 2005 .

[205]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[206]  Yutaka Ohno,et al.  Origin of the 2450 cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes , 2005 .

[207]  M. Dresselhaus,et al.  Raman Spectroscopy of Graphitic Foams , 2005 .

[208]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[209]  A. Jorio,et al.  Influence of the atomic structure on the Raman spectra of graphite edges. , 2004, Physical review letters.

[210]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[211]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[212]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[213]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[214]  J. Maultzsch,et al.  Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion , 2004 .

[215]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[216]  J. Maultzsch,et al.  Chirality distribution and transition energies of carbon nanotubes. , 2004, Physical review letters.

[217]  M. Dresselhaus,et al.  One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes. , 2004, Physical review letters.

[218]  Phaedon Avouris,et al.  Mobile ambipolar domain in carbon-nanotube infrared emitters. , 2004, Physical review letters.

[219]  G. Medeiros-Ribeiro,et al.  Anisotropy of the Raman spectra of nanographite ribbons. , 2004, Physical review letters.

[220]  A. Jorio,et al.  Spectro-electrochemical studies of single wall carbon nanotubes films , 2004 .

[221]  M. Dresselhaus,et al.  Electron-phonon interaction and relaxation time in graphite , 2004 .

[222]  J. Robertson,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[223]  Wladek Walukiewicz,et al.  Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes , 2004 .

[224]  H. Kataura,et al.  Interaction between concentric tubes in DWCNTs , 2004, cond-mat/0406670.

[225]  M. Dresselhaus,et al.  Single- and double-resonance Raman G -band processes in carbon nanotubes , 2004 .

[226]  M. Strano,et al.  Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution , 2004 .

[227]  M. Dresselhaus,et al.  Optical absorption of graphite and single-wall carbon nanotubes , 2004 .

[228]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[229]  S. Louie,et al.  Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes , 2004 .

[230]  J. Tersoff,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[231]  V. Popov Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model , 2004 .

[232]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[233]  A. Gruneis Resonance Raman spectroscopy of single wall carbon nanotubes , 2004 .

[234]  M. Dresselhaus,et al.  Optical absorption matrix elements in single-wall carbon nanotubes , 2004 .

[235]  M. S. Dresselhausa,et al.  Raman spectroscopy of carbon nanotubes , 2004 .

[236]  M. Dresselhaus,et al.  The concept of cutting lines in carbon nanotube science. , 2003, Journal of nanoscience and nanotechnology.

[237]  M. Dresselhaus,et al.  Double resonance Raman spectroscopy of single-wall carbon nanotubes , 2003 .

[238]  M. Strano Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. , 2003, Journal of the American Chemical Society.

[239]  J. Buisson,et al.  Study of interactions in carbon nanotubes systems by using Raman and SERS spectroscopy , 2003 .

[240]  M. Kertész,et al.  The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour , 2003 .

[241]  A. Jorio,et al.  Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes , 2003 .

[242]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[243]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[244]  Angel Rubio,et al.  Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions. , 2003, Physical review letters.

[245]  L. Kavan,et al.  Electrochemical Tuning of Electronic Structure of C60 and C70 Fullerene Peapods: In Situ Visible Near-Infrared and Raman Study , 2003 .

[246]  Riichiro Saito,et al.  Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes , 2003 .

[247]  M. Dresselhaus,et al.  Resonance Raman spectra of carbon nanotubes by cross-polarized light. , 2003, Physical review letters.

[248]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[249]  S. Reich,et al.  Elastic properties and pressure‐induced phase transitions of single‐walled carbon nanotubes , 2003 .

[250]  M. Dresselhaus,et al.  Phonon trigonal warping effect in graphite and carbon nanotubes. , 2003, Physical review letters.

[251]  A. Balandin,et al.  Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices , 2003 .

[252]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[253]  David L. Carroll,et al.  Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes , 2002 .

[254]  S. Lefrant Raman and SERS studies of carbon nanotube systems , 2002 .

[255]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[256]  M. Dresselhaus,et al.  Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes , 2002 .

[257]  M. Dresselhaus,et al.  Linewidth of the Raman features of individual single-wall carbon nanotubes , 2002 .

[258]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[259]  M. Dresselhaus,et al.  Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite , 2002 .

[260]  R. Saito,et al.  Radial breathing modes of multiwalled carbon nanotubes , 2002 .

[261]  J. Maultzsch,et al.  Tight-binding description of graphene , 2002 .

[262]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[263]  M. Dresselhaus,et al.  First and Second-Order Resonance Raman Process in Graphite and Single Wall Carbon Nanotubes , 2002 .

[264]  G. Mahan,et al.  Oscillations of a thin hollow cylinder: Carbon nanotubes , 2002 .

[265]  J. Maultzsch,et al.  Raman scattering in carbon nanotubes revisited , 2002 .

[266]  Bennett B. Goldberg,et al.  G-band resonant Raman study of 62 isolated single-wall carbon nanotubes , 2002 .

[267]  Bennett B. Goldberg,et al.  Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects , 2002 .

[268]  Charles M. Lieber,et al.  Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra , 2002 .

[269]  M. Dresselhaus,et al.  Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy , 2002 .

[270]  J. Hafner,et al.  Anomalous two-peak G'-band Raman effect in one isolated single-wall carbon nanotube , 2002 .

[271]  K. Roberts,et al.  Thesis , 2002 .

[272]  M. Dresselhaus,et al.  Probing phonon dispersion relations of graphite by double resonance Raman scattering. , 2001, Physical review letters.

[273]  Riichiro Saito,et al.  Raman spectroscopy on isolated single wall carbon nanotubes , 2002 .

[274]  J. Kong Carbon nanotubes , 2002 .

[275]  J. Hafner,et al.  Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes , 2001 .

[276]  Wanci Shen,et al.  Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker , 2001 .

[277]  T. Enoki,et al.  Experimental evidence of a single nano-graphene , 2001 .

[278]  Christian Thomsen,et al.  Phonon eigenvectors of chiral nanotubes , 2001 .

[279]  H. Kataura,et al.  Determination of SWCNT diameters from the Raman response of the radial breathing mode , 2001 .

[280]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[281]  Zhonghua Yu,et al.  (n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering , 2001 .

[282]  J. Hafner,et al.  Electronic transition energy E ii for an isolated ( n , m ) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio , 2001 .

[283]  J. Hafner,et al.  Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering , 2001 .

[284]  J. Gilman,et al.  Nanotechnology , 2001 .

[285]  Riichiro Saito,et al.  Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes , 2001 .

[286]  J. Hafner,et al.  Chirality-dependent G-band Raman intensity of carbon nanotubes , 2001 .

[287]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[288]  M. Dresselhaus,et al.  Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters , 2001 .

[289]  Charles M. Lieber,et al.  High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies , 2001 .

[290]  J. Hone Phonons and Thermal Properties of Carbon Nanotubes , 2001 .

[291]  M. Burghard,et al.  Polarized raman spectroscopy on isolated single-wall carbon nanotubes. , 2000, Physical review letters.

[292]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[293]  Hans Gommans,et al.  Polarized spectroscopy of aligned single-wall carbon nanotubes , 2000 .

[294]  Cheng,et al.  Polarized raman study of single-wall semiconducting carbon nanotubes , 2000, Physical review letters.

[295]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[296]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[297]  M. Dresselhaus,et al.  The anomalous dispersion of the disorder-induced and the second-order Raman Bands in Carbon Nanotubes , 2000 .

[298]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[299]  P. Tchénio,et al.  Confocal observation of individual classes of single wall nanotubes by surface-enhanced Raman spectroscopy , 2000 .

[300]  M. Dresselhaus,et al.  Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. , 2000, Physical review letters.

[301]  M. Dresselhaus,et al.  Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces , 2000 .

[302]  Rao,et al.  Polarized raman study of aligned multiwalled carbon nanotubes , 2000, Physical review letters.

[303]  M. Dresselhaus,et al.  Anti-Stokes Raman spectra of single-walled carbon nanotubes , 2000 .

[304]  Kuzmany,et al.  Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes , 2000, Physical review letters.

[305]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[306]  Stéphane Rols,et al.  Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes , 2000 .

[307]  Timothy D. Burchell,et al.  High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties , 2000 .

[308]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[309]  C. Mapelli,et al.  COMMON FORCE FIELD FOR GRAPHITE AND POLYCYCLIC AROMATIC HYDROCARBONS , 1999 .

[310]  W. Blau,et al.  Experimental Observation of Individual Single Wall Nanotube Species by Raman Microscopy , 1999 .

[311]  S. Reich,et al.  Symmetry of the High‐Energy Modes in Carbon Nanotubes , 1999 .

[312]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[313]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[314]  Riichiro Saito,et al.  Finite-size effect on the Raman spectra of carbon nanotubes , 1999 .

[315]  D. Sánchez-Portal,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1998, cond-mat/9811363.

[316]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[317]  B. Humbert,et al.  Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character , 1998 .

[318]  Ping-Heng Tan,et al.  TEMPERATURE-DEPENDENT RAMAN SPECTRA AND ANOMALOUS RAMAN PHENOMENON OF HIGHLY ORIENTED PYROLYTIC GRAPHITE , 1998 .

[319]  A. M. Rao,et al.  Chemical Attachment of Organic Functional Groups to Single-walled Carbon Nanotube Material , 1998 .

[320]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[321]  L. Ley,et al.  Origin of the D peak in the Raman spectrum of microcrystalline graphite , 1998 .

[322]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[323]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[324]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[325]  K. Rieder,et al.  Surface phonon dispersion in graphite and in a lanthanum graphite intercalation compound , 1997 .

[326]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[327]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[328]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[329]  M. Dresselhaus,et al.  Synthesis, Extraction, and Purification of Fullerenes , 1996 .

[330]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[331]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[332]  M. Dresselhaus Carbon nanotubes , 1995 .

[333]  T. Ando,et al.  Aharonov-Bohm effect in carbon nanotubes , 1994 .

[334]  W. Blau,et al.  Resonance Raman and infrared spectroscopy of carbon nanotubes , 1994 .

[335]  M. Dresselhaus,et al.  Phonon modes in carbon nanotubules , 1993 .

[336]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[337]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[338]  M. Dresselhaus,et al.  Ion Implantation in Diamond, Graphite and Related Materials. Springer‐Verlag Berlin, Heidelberg, 1992, 202 Seiten, 108 Abbildungen, 5 Tabellen, Preis: DM 79.00, ISBN 3‐540‐54956‐0 — ISBN 0‐387‐54956‐0 , 1992 .

[339]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[340]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[341]  Oshima,et al.  Bond softening in monolayer graphite formed on transition-metal carbide surfaces. , 1990, Physical review. B, Condensed matter.

[342]  B. Santo,et al.  Solid State , 2012 .

[343]  M. Dresselhaus,et al.  Graphite fibers and filaments , 1988 .

[344]  Dresselhaus,et al.  Observation of metallic conductivity in liquid carbon. , 1988, Physical review letters.

[345]  F. Rodríguez-Reinoso,et al.  Chemistry and Physics of Carbon , 2022 .

[346]  R. Palmer,et al.  Phonons in graphite studied by eels , 1987 .

[347]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[348]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[349]  A. Marchand,et al.  Caracterisation de materiaux carbones par microspectrometrie Raman , 1984 .

[350]  A. Oberlin Carbonization and graphitization , 1984 .

[351]  R. Saito,et al.  Vibronic States of Polyacetylene, (CH)x , 1983 .

[352]  Gene Dresselhaus,et al.  Lattice-dynamical model for graphite , 1982 .

[353]  M. S. Dresselhaus,et al.  Model for Raman scattering from incompletely graphitized carbons , 1982 .

[354]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[355]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[356]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[357]  D. B. Fischbach,et al.  Observation of Raman band shifting with excitation wavelength for carbons and graphites , 1981 .

[358]  Richard M. Martin,et al.  Light scattering study of boron nitride microcrystals , 1981 .

[359]  B. Bulkin,et al.  Applications of Raman spectroscopy , 1980 .

[360]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[361]  D. B. Fischbach,et al.  New Lines in the Raman Spectra of Carbons and Graphite , 1978 .

[362]  M. Dresselhaus,et al.  Raman scattering from in-plane lattice modes in low-stage graphite-alkali-metal compounds , 1977 .

[363]  G. Lucovsky,et al.  Infrared active optical vibrations of graphite , 1977 .

[364]  M. Endo,et al.  Structural Improvement of Carbon Fibers Prepared from Benzene , 1976 .

[365]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[366]  A. Oberlin,et al.  High resolution electron microscope observations of graphitized carbon fibers , 1976 .

[367]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[368]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .

[369]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[370]  D. Young,et al.  Electronic Properties of Well Oriented Graphite , 1970, Nature.

[371]  A. Ubbelohde Overpotential effects in the formation of graphite nitrates , 1969 .

[372]  A. Moore Compression Annealing of Pyrolytic Boron Nitride , 1969, Nature.

[373]  R. Leite,et al.  Enhancement of Raman Cross Section in CdS due to Resonant Absorption , 1966 .

[374]  A. Clauss,et al.  Dünnste Kohlenstoff-Folien , 1962 .

[375]  G. V. Chester,et al.  Solid State Physics , 2000 .

[376]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[377]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[378]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[379]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[380]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[381]  H. Lipson Crystal Structures , 1949, Nature.

[382]  P. Wallace The Band Theory of Graphite , 1947 .

[383]  A. R. Stokes,et al.  A New Structure of Carbon , 1942, Nature.

[384]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[385]  K. S. Krishnan,et al.  The Magnetic Anisotropy of Crystalline Nitrates and Carbonates , 1927 .