Convex Optimization
暂无分享,去创建一个
[1] J. Farkas. Theorie der einfachen Ungleichungen. , 1902 .
[2] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[3] J. Jewkes,et al. Theory of Location of Industries. , 1933 .
[4] Karl Löwner. Über monotone Matrixfunktionen , 1934 .
[5] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[6] Th. Motzkin. Beiträge zur Theorie der linearen Ungleichungen , 1936 .
[7] Anton E. Mayer. Theorie der konvexen Körper , 1936 .
[8] J. Neumann. A Model of General Economic Equilibrium , 1945 .
[9] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[10] O. H. Brownlee,et al. ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .
[11] H. Nikaidô. On von Neumann’s minimax theorem , 1954 .
[12] R. Freund. THE INTRODUCTION OF RISK INTO A PROGRAMMING MODEL , 1956 .
[13] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[14] H. Markowitz. The optimization of a quadratic function subject to linear constraints , 1956 .
[15] M. Marcus,et al. Inequalities for Symmetric Functions and Hermitian Matrices , 1957, Canadian Journal of Mathematics.
[16] Clifford Hildreth,et al. A quadratic programming procedure , 1957 .
[17] I. Olkin,et al. Multivariate Chebyshev Inequalities , 1960 .
[18] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[19] L. V. Kantorovich,et al. Mathematical Methods of Organizing and Planning Production , 1960 .
[20] L. Brickman. ON THE FIELD OF VALUES OF A MATRIX , 1961 .
[21] K. Arrow,et al. QUASI-CONCAVE PROGRAMMING , 1961 .
[22] R. H. Strotz. Theory of Value: An Axiomatic Analysis of Economic Equilibrium. , 1961 .
[23] R. Bellman,et al. On Systems of Linear Inequalities in Hermitian Matrix Variables , 1962 .
[24] J. Cockcroft. Investment in Science , 1962, Nature.
[25] C. Davis. Notions generalizing convexity for functions defined on spaces of matrices , 1963 .
[26] L. Kantorovich,et al. Functional analysis and applied mathematics , 1963 .
[27] W. Rudin. Principles of mathematical analysis , 1964 .
[28] K. Isii. Inequalities of the types of chebyshev and cramér-rao and mathematical programming , 1964 .
[29] E. Calabi. Linear systems of real quadratic forms. II , 1964 .
[30] J. B. Rosen. Pattern separation by convex programming , 1965 .
[31] O. Mangasarian. Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .
[32] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[33] Bùi-Trong-Liêu,et al. La mèthode des centres dans un espace topologique , 1966 .
[34] J. Ponstein,et al. Seven kinds of convexity , 1967 .
[35] David G. Luenberger,et al. Quasi-Convex Programming , 1968 .
[36] Richard F. Meyer,et al. The Consistent Assessment and Fairing of Preference Functions , 1968, IEEE Trans. Syst. Sci. Cybern..
[37] M. Hestenes. Pairs of quadratic forms , 1968 .
[38] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[39] M. J. D. Powell,et al. Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .
[40] Adi Ben-Israel. Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory☆ , 1969 .
[41] J. Boussard. The introduction of risk into a programming model: different criteria and actual behaviour of farmers. , 1969 .
[42] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[43] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[44] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[45] Adi Ben-Israel,et al. More on linear inequalities with applications to matrix theory , 1971 .
[46] A. Berman. Cones, matrices and mathematical programming , 1973 .
[47] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[48] R. Tyrrell Rockafellar. Conjugate Duality and Optimization , 1974 .
[49] D. Titterington. Optimal design: Some geometrical aspects of D-optimality , 1975 .
[50] Jack Elzinga,et al. A central cutting plane algorithm for the convex programming problem , 1975, Math. Program..
[51] P. Whittle,et al. Optimization under Constraints , 1975 .
[52] M. Kreĭn,et al. The Markov Moment Problem and Extremal Problems , 1977 .
[53] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[54] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[55] B. Craven,et al. Generalizations of Farkas’ Theorem , 1977 .
[56] F. Uhlig. A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .
[57] P. K. Gupta,et al. Linear programming and theory of games , 1979 .
[58] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[59] M. Todd,et al. The Ellipsoid Method: A Survey , 1980 .
[60] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[61] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[62] Stochastic Programming,et al. Logarithmic Concave Measures and Related Topics , 1980 .
[63] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[64] J. Ecker. Geometric Programming: Methods, Computations and Applications , 1980 .
[65] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[66] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[67] H. Wolkowicz,et al. Some applications of optimization in matrix theory , 1981 .
[68] Philip E. Gill,et al. Practical optimization , 1981 .
[69] Harold W. Kuhn,et al. Nonlinear programming: a historical view , 1982, SMAP.
[70] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[71] Siegfried Schaible,et al. Bibliography in fractional programming , 1982, Z. Oper. Research.
[72] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[73] W. Fenchel. Convexity Through the Ages , 1983 .
[74] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[75] Jan van Tiel,et al. Convex Analysis: An Introductory Text , 1984 .
[76] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[77] J. Gower. Properties of Euclidean and non-Euclidean distance matrices , 1985 .
[78] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[79] Michael A. Saunders,et al. On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..
[80] G. Sonnevend. An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .
[81] Aharon Ben-Tal,et al. Lectures on modern convex optimization , 1987 .
[82] Evanghelos Zafiriou,et al. Robust process control , 1987 .
[83] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[84] G. Stewart,et al. Theory of the Combination of Observations Least Subject to Errors , 1987 .
[85] A. Peressini,et al. The Mathematics Of Nonlinear Programming , 1988 .
[86] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[87] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[88] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[89] Konrad Doll,et al. Analytical placement: a linear or a quadratic objective function? , 1991, 28th ACM/IEEE Design Automation Conference.
[90] Stephen P. Boyd,et al. Linear controller design: limits of performance , 1991 .
[91] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[92] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[93] S. Vavasis. Nonlinear optimization: complexity issues , 1991 .
[94] Georg Sigl,et al. GORDIAN: VLSI placement by quadratic programming and slicing optimization , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[95] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[96] Clóvis C. Gonzaga,et al. Path-Following Methods for Linear Programming , 1992, SIAM Rev..
[97] Sanjay Mehrotra,et al. On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..
[98] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[99] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[100] Iain S. Duff,et al. The solution of augmented systems , 1993 .
[101] Brian W. Kernighan,et al. AMPL: A Modeling Language for Mathematical Programming , 1993 .
[102] Sung-Mo Kang,et al. An exact solution to the transistor sizing problem for CMOS circuits using convex optimization , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[103] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[104] Marvin Marcus,et al. A Convex Set , 1993, SIAM Rev..
[105] Stephen P. Boyd,et al. Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.
[106] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[107] Michael Jackson,et al. Optimal Design of Experiments , 1994 .
[108] Roy E. Marsten,et al. Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..
[109] F. Jarre. Optimal ellipsoidal approximations around the Analytic center , 1994 .
[110] Dick den Hertog,et al. Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .
[111] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[112] Shinji Mizuno,et al. An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..
[113] P. Pardalos,et al. Handbook of global optimization , 1995 .
[114] H. Fawcett. Manual of Political Economy , 1995 .
[115] M. Dahleh,et al. Control of Uncertain Systems: A Linear Programming Approach , 1995 .
[116] János D. Pintér,et al. Global optimization in action , 1995 .
[117] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[118] J. Lasserre. A new Farkas lemma for positive semidefinite matrices , 1995, IEEE Trans. Autom. Control..
[119] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[120] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[121] A. Mas-Colell,et al. Microeconomic Theory , 1995 .
[122] Yinyu Ye,et al. Complexity Analysis of an Interior Cutting Plane Method for Convex Feasibility Problems , 1996, SIAM J. Optim..
[123] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[124] Yinyu Ye,et al. A simplified homogeneous and self-dual linear programming algorithm and its implementation , 1996, Ann. Oper. Res..
[125] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[126] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[127] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[128] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[129] Stephen J. Wright,et al. Superlinear convergence of an interior-point method for monotone variational inequalities , 1996 .
[130] L. Faybusovich. Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .
[131] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[132] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[133] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[134] L. Faybusovich. Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .
[135] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[136] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[137] C. Scherer,et al. Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..
[138] Laurent El Ghaoui,et al. Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..
[139] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[140] Yinyu Ye,et al. A Computational Study of the Homogeneous Algorithm for Large-scale Convex Optimization , 1998, Comput. Optim. Appl..
[141] Jean-Philippe Vial,et al. Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.
[142] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization , 1998 .
[143] Laurent El Ghaoui,et al. Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..
[144] Robert J. Vanderbei,et al. Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.
[145] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[146] Stephen J. Wright,et al. Application of Interior-Point Methods to Model Predictive Control , 1998 .
[147] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[148] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[149] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[150] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[151] Z. Luo,et al. Conic convex programming and self-dual embedding , 1998 .
[152] Sabih H. Gerez,et al. Algorithms for VLSI design automation , 1998 .
[153] G. Golub,et al. Parameter Estimation in the Presence of Bounded Data Uncertainties , 1998, SIAM J. Matrix Anal. Appl..
[154] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[155] S. Ross. An Introduction to Mathematical Finance: Options and Other Topics , 1999 .
[156] Kumaraswamy Ponnambalam,et al. A unified approach to statistical design centering of integrated circuits with correlated parameters , 1999 .
[157] Garret N. Vanderplaats,et al. Numerical optimization techniques for engineering design , 1999 .
[158] Arkadi Nemirovski,et al. Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..
[159] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[160] Jason Wu,et al. The Reference Manual for SPOOLES, Release 2.2: An Object Oriented Software Library for Solving Sparse Linear Systems of Equations , 1999 .
[161] Yinyu Ye,et al. Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..
[162] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[163] Laurent El Ghaoui,et al. Advances in linear matrix inequality methods in control: advances in design and control , 1999 .
[164] Er-Wei Bai,et al. Bounded error parameter estimation: a sequential analytic center approach , 1999, IEEE Trans. Autom. Control..
[165] Yurii Nesterov,et al. Squared Functional Systems and Optimization Problems , 2000 .
[166] Zhi-Quan Luo,et al. Design of orthogonal pulse shapes for communications via semidefinite programming , 2000, IEEE Trans. Signal Process..
[167] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[168] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[169] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[170] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[171] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[172] Y. Ye,et al. Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .
[173] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[174] D. Bertsimas,et al. Moment Problems and Semidefinite Optimization , 2000 .
[175] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[176] M. Florenzano,et al. Finite Dimensional Convexity and Optimization , 2001 .
[177] Stephen P. Boyd,et al. Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[178] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[179] Leonid Faybusovich,et al. A long-step primal-dual algorithm for the symmetric programming problem , 2001, Syst. Control. Lett..
[180] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[181] James Renegar,et al. A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.
[182] Michael J. Todd,et al. The many facets of linear programming , 2002, Math. Program..
[183] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[184] Steven J. Benson,et al. DSDP4 { A Software Package Implementing the Dual-Scaling Algorithm for Semidenite Programming 1 , 2002 .
[185] Anders Forsgren,et al. Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..
[186] Jiming Peng,et al. Self-regularity - a new paradigm for primal-dual interior-point algorithms , 2002, Princeton series in applied mathematics.
[187] J. Lasserre. Bounds on measures satisfying moment conditions , 2002 .
[188] Zhi-Quan Luo,et al. Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA , 2002, IEEE Trans. Signal Process..
[189] Takashi Tsuchiya,et al. Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank , 2003, Math. Program..
[190] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[191] Donald Goldfarb,et al. Robust Portfolio Selection Problems , 2003, Math. Oper. Res..
[192] Donald Goldfarb,et al. Robust convex quadratically constrained programs , 2003, Math. Program..
[193] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[194] Donald Goldfarb,et al. Second-order cone programming , 2003, Math. Program..
[195] John P. Fishburn,et al. TILOS: A posynomial programming approach to transistor sizing , 2003, ICCAD 2003.
[196] Zhi-Quan Luo,et al. Applications of convex optimization in signal processing and digital communication , 2003, Math. Program..
[197] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[198] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[199] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[200] Stephen P. Boyd,et al. Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..
[201] M. H. Wright. The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .
[202] G. Dullerud,et al. A Course in Robust Control Theory: A Convex Approach , 2005 .
[203] A. Banerjee. Convex Analysis and Optimization , 2006 .
[204] R. Kannan,et al. Convex Sets and their Applications , 2006 .
[205] E. Beckenbach. CONVEX FUNCTIONS , 2007 .
[206] Katta G. Murty,et al. Nonlinear Programming Theory and Algorithms , 2007, Technometrics.
[207] I. Bárány,et al. convex sets , 2007 .
[208] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .