Retinal glial cells enhance human vision acuity.

We construct a light-guiding model of the retina outside the fovea, in which an array of glial (Muller) cells permeates the depth of the retina down to the photoreceptors. Based on measured refractive indices, we propagate light to obtain a significant increase of the intensity at the photoreceptors. For pupils up to 6 mm width, the coupling between neighboring cells is only a few percent. Low cross talk over the whole visible spectrum also explains the insensitivity to chromatic aberrations of the eye. The retina is revealed as an optimal structure designed for improving the sharpness of images.