NUMERICAL INVESTIGATION OF HEAT TRANSFER UNDER CONFINED IMPINGING TURBULENT SLOT JETS

This work numerically in vestigates confined impinging turbulent slot jets. Eight turbulence models, including one standard and seven low-Reynolds-number k-epsilon models, are employed and tested to predict the heat transfer performance of multiple impinging jets. Validation results indicate that the prediction by each turbulence model depends on grid distribution and numerical scheme used in spatial discretization. In addition, spent fluid exits are set between impinging jets to reduce the cross-flow effect in degradation of the heat transfer of downstream impinging jets. The overall heat transfer performance can be enhanced by proper spent fluid removal.