Hypersliceplorer: Interactive visualization of shapes in multiple dimensions

In this paper we present Hypersliceplorer, an algorithm for generating 2D slices of multi‐dimensional shapes defined by a simplical mesh. Often, slices are generated by using a parametric form and then constraining parameters to view the slice. In our case, we developed an algorithm to slice a simplical mesh of any number of dimensions with a two‐dimensional slice. In order to get a global appreciation of the multi‐dimensional object, we show multiple slices by sampling a number of different slicing points and projecting the slices into a single view per dimension pair. These slices are shown in an interactive viewer which can switch between a global view (all slices) and a local view (single slice). We show how this method can be used to study regular polytopes, differences between spaces of polynomials, and multi‐objective optimization surfaces.

[1]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[2]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[3]  Kim Marriott,et al.  HOLA: Human-like Orthogonal Network Layout , 2016, IEEE Transactions on Visualization and Computer Graphics.

[4]  Günter M. Ziegler,et al.  Questions About Polytopes , 2001 .

[5]  R. Wenger Isosurfaces: Geometry, Topology, and Algorithms , 2013 .

[6]  Torsten Möller,et al.  Sliceplorer: 1D slices for multi‐dimensional continuous functions , 2017, Comput. Graph. Forum.

[7]  G. Phillips Interpolation and Approximation by Polynomials , 2003 .

[8]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[9]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[10]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[11]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[12]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[13]  Peter Lindstrom,et al.  Topological Spines: A Structure-preserving Visual Representation of Scalar Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[14]  Andrew J. Hanson,et al.  Geometry for N-Dimensional Graphics , 1994, Graphics Gems.

[15]  Wilmot Li,et al.  Exploded View Diagrams of Mathematical Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[16]  Matthew J. Sottile,et al.  Curve and surface reconstruction: algorithms with mathematical analysis by Tamal K. Dey Cambridge University Press , 2010, SIGA.

[17]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[18]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[19]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[20]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[21]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  Marc Streit,et al.  WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making , 2017, IEEE Transactions on Visualization and Computer Graphics.

[23]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[24]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[25]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  Andrew J. Hanson,et al.  Interactive visualization methods for four dimensions , 1993, Proceedings Visualization '93.

[28]  Valerio Pascucci,et al.  Visual Exploration of High Dimensional Scalar Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[30]  David J. Duke,et al.  Joint Contour Nets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[31]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[32]  Wolfgang Berger,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Hypermoval: Interactive Visual Validation of Regression Models for Real-time Simulation , 2022 .

[33]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  J. V. van Wijk,et al.  HyperSlice: visualization of scalar functions of many variables , 1993, VIS '93.

[35]  Hanspeter Pfister,et al.  LineUp: Visual Analysis of Multi-Attribute Rankings , 2013, IEEE Transactions on Visualization and Computer Graphics.

[36]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..