A Nonautonomous Juvenile-Adult Model: Well-Posedness and Long-Time Behavior via a Comparison Principle

A nonautonomous nonlinear continuous juvenile-adult model where juveniles and adults depend on different resources is developed. It is assumed that juveniles are structured by age, while adults are structured by size. Existence-uniqueness results are proved using the monotone method based on a comparison principle established in this paper. Conditions on the model parameters that lead to extinction or persistence of the population are obtained via the upper-lower solution technique.

[1]  J M Cushing A juvenile-adult model with periodic vital rates , 2006, Journal of mathematical biology.

[2]  J. Vonesh,et al.  Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines , 2002, Oecologia.

[3]  Azmy S. Ackleh,et al.  Existence-uniqueness of solutions for a nonlinear nonautonomous size-structured population model: an upper-lower solution approach , 2000 .

[4]  A. S. Ackleh,et al.  A monotone approximation for the nonautomous size-structured population model , 1999 .

[5]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[6]  Odo Diekmann,et al.  On the formulation and analysis of general deterministic structured population models I. Linear Theory , 1998, Journal of mathematical biology.

[7]  H. Banks,et al.  A finite difference approximation for a coupled system of nonlinear size-structured populations , 2002 .

[8]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[9]  M. S. Gunzburger Reproductive Ecology of the Green Treefrog (Hyla cinerea) in Northwestern Florida , 2006 .

[10]  Jim M Cushing,et al.  Juvenile versus adult competition , 1991 .

[11]  Keng Deng,et al.  Competitive exclusion and coexistence for a quasilinear size-structured population model. , 2004, Mathematical biosciences.

[12]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[13]  A. S. Ackleh,et al.  SURVIVAL OF THE FITTEST IN A QUASILINEAR SIZE‐STRUCTURED POPULATION MODEL , 2004 .

[14]  Albert Hazen Wright,et al.  Handbook of Frogs and Toads ... of the United States and Canada , 1949 .

[15]  A. Storfer,et al.  Amphibian declines: future directions , 2003 .

[16]  Azmy S. Ackleh,et al.  A discrete two-stage population model: continuous versus seasonal reproduction , 2007 .

[17]  J. Farkas,et al.  Asymptotic behavior of size structured populations via juvenile-adult interaction , 2007 .

[18]  Kimberly G. Smith Effects of nonindigenous tadpoles on native tadpoles in Florida: evidence of competition , 2005 .

[19]  Odo Diekmann,et al.  Stability and Bifurcation Analysis of Volterra Functional Equations in the Light of Suns and Stars , 2007, SIAM J. Math. Anal..

[20]  Richard Bellman,et al.  Methods Of Nonlinear Analysis , 1970 .

[21]  James P. Collins,et al.  Global amphibian declines: sorting the hypotheses , 2003 .

[22]  A. S. Ackleh,et al.  Discrete three-stage population model: persistence and global stability results , 2008, Journal of biological dynamics.

[23]  Sam D. Karhbet,et al.  Population Estimates of Hyla cinerea (Schneider) (Green Tree Frog) in an Urban Environment , 2007 .

[24]  Joan Saldaña,et al.  A model of physiologically structured population dynamics with a nonlinear individual growth rate , 1995 .

[25]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[26]  ÀNGEL CALSINA,et al.  Global Dynamics and Optimal Life History of a Structured Population Model , 1999, SIAM J. Appl. Math..

[27]  Azmy S. Ackleh,et al.  An implicit finite difference scheme for the nonlinear size-structured population model , 1997 .

[28]  C. Castillo-Chavez,et al.  An age-structured epidemic model of rotavirus with vaccination , 2006, Journal of mathematical biology.

[29]  V. Lakshmikantham,et al.  Monotone iterative techniques for nonlinear differential equations , 1985 .

[30]  Jim M Cushing,et al.  The dynamics of hierarchical age-structured populations , 1994 .

[31]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .