Automated methods for formal proofs in simple arithmetics and algebra (Automatische Methoden für formale Beweise in einfachen Arithmetiken und Algebren)

In an LCF-like theorem prover, any proof must be produced from a small set of inference rules. The development of automated proof methods in such systems is extremely important. In this thesis we study the following question: How should we integrate a proof procedure in an LCF-like theorem prover, both in general and in the special case of arithmetics? We investigate three integration paradigms and present several proof procedures. These include universal and weak existential problems over rings, universal polynomial problems over the reals, quantifier elimination for parametric linear problems over ordered fields, Presburger arithmetic, mixed real-integer linear arithmetic, algebraically and real closed fields. Our work has been carried out in the Isabelle framework.

[1]  Markus Wenzel,et al.  Context Aware Calculation and Deduction , 2007, Calculemus/MKM.

[2]  Tobias Nipkow,et al.  A Code Generator Framework for Isabelle / HOL , 2007 .

[3]  David Delahaye,et al.  Quantifier Elimination over Algebraically Closed Fields in a Proof Assistant using a Computer Algebra System , 2005, Calculemus.

[4]  A. Macintyre,et al.  Elimination of Quantifiers in Algebraic Structures , 1983 .

[5]  Jens Erik Fenstad,et al.  Selected works in logic , 1970 .

[6]  Volker Weispfenning,et al.  Complexity and uniformity of elimination in Presburger arithmetic , 1997, ISSAC.

[7]  Pierre Wolper,et al.  An effective decision procedure for linear arithmetic over the integers and reals , 2005, TOCL.

[8]  Robin Milner,et al.  Edinburgh lcf: a mechanized logic of computation , 1978 .

[9]  Robin Milner,et al.  A Metalanguage for interactive proof in LCF , 1978, POPL.

[10]  Über positive Darstellungen von Polynomen , 1911 .

[11]  Konrad Slind Derivation and Use of Induction Schemes in Higher-Order Logic , 1997, TPHOLs.

[12]  Dung T. Huynh,et al.  A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..

[13]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[14]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[15]  Makarius Wenzel,et al.  SML with antiquotations embedded into Isabelle / Isar , 2007 .

[16]  C. H. Langford Some Theorems on Deducibility , 1926 .

[17]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[18]  Benjamin Grégoire,et al.  A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers , 2006, IJCAR.

[19]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[20]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[21]  Volker Weispfenning Deciding linear-exponential problems , 2000, SIGS.

[22]  Dima Grigoriev,et al.  Complexity of Quantifier Elimination in the Theory of Algebraically Closed Fields , 1984, MFCS.

[23]  William Pugh,et al.  The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[24]  C. Kuratowski,et al.  Les opérations logiques et les ensembles projectifs , 1931 .

[25]  Tobias Nipkow,et al.  Executing Higher Order Logic , 2000, TYPES.

[26]  J. E. Littlewood,et al.  Mathematical Notes (14): “Every Polynomial has a Root” , 1941 .

[27]  T. Nipkow,et al.  Reflecting Quantifier Elimination for Linear Arithmetic , 2008 .

[28]  Benjamin Grégoire,et al.  Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.

[29]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[30]  T. W. Körner,et al.  On the Fundamental Theorem of Algebra , 2006, Am. Math. Mon..

[31]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[32]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[33]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[34]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[35]  Konrad Slind,et al.  Function Definition in Higher-Order Logic , 1996, TPHOLs.

[36]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[37]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[38]  Pablo A. Parrilo,et al.  A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients , 2007, SNC '07.

[39]  Michel Mauny,et al.  A complete and realistic implementation of quotations for ML , 1994 .

[40]  David Corwin Galois Theory , 2009 .

[41]  Markus Wenzel,et al.  Isabelle/Isar , 2006, The Seventeen Provers of the World.

[42]  Guillaume Hanrot,et al.  Primality Proving with Elliptic Curves , 2007, TPHOLs.

[43]  Benjamin Grégoire,et al.  A Computational Approach to Pocklington Certificates in Type Theory , 2006, FLOPS.

[44]  F. Klaedtke On the automata size for Presburger arithmetic , 2004, LICS 2004.

[45]  John Harrison,et al.  A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.

[46]  Robert S. Boyer,et al.  Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. , 1979 .

[47]  William M. Farmer Biform Theories in Chiron , 2007, Calculemus/MKM.

[48]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[49]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[50]  Markus Wenzel,et al.  Constructive Type Classes in Isabelle , 2006, TYPES.

[51]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[52]  Clemens Ballarin Locales and Locale Expressions in Isabelle/Isar , 2003, TYPES.

[53]  Leonard Berman,et al.  Precise bounds for presburger arithmetic and the reals with addition: Preliminary report , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[54]  Xiao-Shan Gao,et al.  Automated Reasoning in Geometry , 2001, Handbook of Automated Reasoning.

[55]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[56]  Ernst W. Mayr,et al.  Some Complexity Results for Polynomial Ideals , 1997, J. Complex..

[57]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..

[58]  Deepak Kapur,et al.  Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets , 1996, Automated Deduction in Geometry.

[59]  Tom Melham,et al.  Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings , 2005, TPHOLs.

[60]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[61]  Assia Mahboubi,et al.  Proving Formally the Implementation of an Efficient gcd Algorithm for Polynomials , 2006, IJCAR.

[62]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[63]  David Delahaye,et al.  A Proof Dedicated Meta-Language , 2002, LFM.

[64]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[65]  Volker Weispfenning,et al.  Parametric linear and quadratic optimization by elimina-tion , 1994 .

[66]  M. Davis A Computer Program for Presburger’s Algorithm , 1983 .

[67]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[68]  John Harrison,et al.  A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.

[69]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[70]  Context aware Calculation and Deduction Ring Equalities via Gröbner Bases in Isabelle , 2007 .

[71]  Derek C. Oppen,et al.  Elementary bounds for presburger arithmetic , 1973, STOC.

[72]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[73]  Tobias Nipkow,et al.  Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic , 2005, LPAR.

[74]  G. Kreisel,et al.  Elements of Mathematical Logic: Model Theory , 1971 .

[75]  John Harrison Complex quantifier elimination in HOL , 2001 .

[76]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[77]  Clemens Ballarin,et al.  Interpretation of Locales in Isabelle: Theories and Proof Contexts , 2006, MKM.

[78]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[79]  H. R. Wüthrich,et al.  Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.

[80]  C. Ballarin Computer Algebra and Theorem Proving , 1999 .

[81]  Andrew W. Appel,et al.  Dependent types ensure partial correctness of theorem provers , 2004, J. Funct. Program..

[82]  Volker Weispfenning,et al.  Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.

[83]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[84]  Morten Welinder Very Efficient Conversions , 1995, TPHOLs.

[85]  Dima Grigoriev,et al.  Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..

[86]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[87]  Florian Kammüller,et al.  Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.

[88]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.

[89]  John Harrison,et al.  Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.

[90]  Bruce Reznick,et al.  Sums of squares of real polynomials , 1995 .

[91]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[92]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[93]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[94]  Hirokazu Anai,et al.  Deciding linear-trigonometric problems , 2000, ISSAC.

[95]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[96]  Amine Chaieb,et al.  Verifying Mixed Real-Integer Quantifier Elimination , 2006, IJCAR.

[97]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[98]  Michael J. Maher,et al.  Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.

[99]  Markus Wenzel,et al.  Isabelle, Isar - a versatile environment for human readable formal proof documents , 2002 .

[100]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[101]  Alexander Krauss Partial Recursive Functions in Higher-Order Logic , 2006, IJCAR.

[102]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[103]  David L. Dill,et al.  Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods , 2002, FMCAD.

[104]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[105]  Hendrik Pieter Barendregt,et al.  Autarkic Computations in Formal Proofs , 2002, Journal of Automated Reasoning.

[106]  V. Weispfenning A New Approach to Quantifier Elimination for Real Algebra , 1998 .

[107]  A. Seidenberg Constructions in algebra , 1974 .

[108]  Manuel Kauers,et al.  Towards Mechanized Mathematical Assistants, 14th Symposium, Calculemus 2007, 6th International Conference, MKM 2007, Hagenberg, Austria, June 27-30, 2007, Proceedings , 2007, Calculemus/MKM.

[109]  Michael Norrish Complete Integer Decision Procedures as Derived Rules in HOL , 2003, TPHOLs.

[110]  Cezary Kaliszyk,et al.  Certified Computer Algebra on Top of an Interactive Theorem Prover , 2007, Calculemus/MKM.

[111]  Alan P. Parkes Logic and Computation , 2002 .

[112]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[113]  Reinhard Bündgen Simulation Buchberger's Algorithm by Knuth-Bendix Completion , 1991, RTA.

[114]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[115]  Fred Richman,et al.  Constructive aspects of Noetherian rings , 1974 .

[116]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[117]  Amine Chaieb,et al.  Mechanized quantifier elimination for linear real-arithmetic in Isabelle / HOL , 2006 .

[118]  Volker Weispfenning The Complexity of Almost Linear Diophantine Problems , 1990, J. Symb. Comput..

[119]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[120]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[121]  Aaron Stump,et al.  Validated Proof-Producing Decision Procedures , 2005, Electron. Notes Theor. Comput. Sci..

[122]  Lawrence C. Paulson,et al.  Logic And Computation , 1987 .

[123]  David L. Dill,et al.  An Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic , 2003, TACAS.

[124]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[125]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[126]  John Harrison Automating Elementary Number-Theoretic Proofs Using Gröbner Bases , 2007, CADE.

[127]  Thomas Sturm,et al.  A New Approach for Automatic Theorem Proving in Real Geometry , 1998, Journal of Automated Reasoning.

[128]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[129]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[130]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[131]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[132]  Donald W. Loveland,et al.  Presburger arithmetic with bounded quantifier alternation , 1978, STOC.

[133]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[134]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[135]  Bruno Barras Programming and Computing in HOL , 2000, TPHOLs.

[136]  Tobias Nipkow,et al.  Proof Synthesis and Reflection for Linear Arithmetic , 2008, Journal of Automated Reasoning.

[137]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[138]  Andrei Voronkov,et al.  Handbook of Automated Reasoning: Volume 1 , 2001 .

[139]  J. Strother Moore,et al.  An Industrial Strength Theorem Prover for a Logic Based on Common Lisp , 1997, IEEE Trans. Software Eng..

[140]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[141]  F. Wiedijk The Seventeen Provers of the World , 2006 .

[142]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[143]  Steven Obua,et al.  Proving Bounds for Real Linear Programs in Isabelle/HOL , 2005, TPHOLs.

[144]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[145]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[146]  Joos Heintz,et al.  An efficient quantifier elimination algorithm for algebraically closed fields of any characteristic , 1975, SIGS.