Automated methods for formal proofs in simple arithmetics and algebra (Automatische Methoden für formale Beweise in einfachen Arithmetiken und Algebren)
暂无分享,去创建一个
[1] Markus Wenzel,et al. Context Aware Calculation and Deduction , 2007, Calculemus/MKM.
[2] Tobias Nipkow,et al. A Code Generator Framework for Isabelle / HOL , 2007 .
[3] David Delahaye,et al. Quantifier Elimination over Algebraically Closed Fields in a Proof Assistant using a Computer Algebra System , 2005, Calculemus.
[4] A. Macintyre,et al. Elimination of Quantifiers in Algebraic Structures , 1983 .
[5] Jens Erik Fenstad,et al. Selected works in logic , 1970 .
[6] Volker Weispfenning,et al. Complexity and uniformity of elimination in Presburger arithmetic , 1997, ISSAC.
[7] Pierre Wolper,et al. An effective decision procedure for linear arithmetic over the integers and reals , 2005, TOCL.
[8] Robin Milner,et al. Edinburgh lcf: a mechanized logic of computation , 1978 .
[9] Robin Milner,et al. A Metalanguage for interactive proof in LCF , 1978, POPL.
[10] Über positive Darstellungen von Polynomen , 1911 .
[11] Konrad Slind. Derivation and Use of Induction Schemes in Higher-Order Logic , 1997, TPHOLs.
[12] Dung T. Huynh,et al. A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..
[13] Thomas Sturm,et al. REDLOG: computer algebra meets computer logic , 1997, SIGS.
[14] A. Tarski,et al. Sur les ensembles définissables de nombres réels , 1931 .
[15] Makarius Wenzel,et al. SML with antiquotations embedded into Isabelle / Isar , 2007 .
[16] C. H. Langford. Some Theorems on Deducibility , 1926 .
[17] Paul J. Cohen,et al. Decision procedures for real and p‐adic fields , 1969 .
[18] Benjamin Grégoire,et al. A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers , 2006, IJCAR.
[19] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[20] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[21] Volker Weispfenning. Deciding linear-exponential problems , 2000, SIGS.
[22] Dima Grigoriev,et al. Complexity of Quantifier Elimination in the Theory of Algebraically Closed Fields , 1984, MFCS.
[23] William Pugh,et al. The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).
[24] C. Kuratowski,et al. Les opérations logiques et les ensembles projectifs , 1931 .
[25] Tobias Nipkow,et al. Executing Higher Order Logic , 2000, TYPES.
[26] J. E. Littlewood,et al. Mathematical Notes (14): “Every Polynomial has a Root” , 1941 .
[27] T. Nipkow,et al. Reflecting Quantifier Elimination for Linear Arithmetic , 2008 .
[28] Benjamin Grégoire,et al. Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.
[29] Jeanne Ferrante,et al. A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..
[30] T. W. Körner,et al. On the Fundamental Theorem of Algebra , 2006, Am. Math. Mon..
[31] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..
[32] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[33] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[34] MA John Harrison PhD. Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.
[35] Konrad Slind,et al. Function Definition in Higher-Order Logic , 1996, TPHOLs.
[36] Thomas Sturm,et al. Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.
[37] Rüdiger Loos,et al. Applying Linear Quantifier Elimination , 1993, Comput. J..
[38] Pablo A. Parrilo,et al. A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients , 2007, SNC '07.
[39] Michel Mauny,et al. A complete and realistic implementation of quotations for ML , 1994 .
[40] David Corwin. Galois Theory , 2009 .
[41] Markus Wenzel,et al. Isabelle/Isar , 2006, The Seventeen Provers of the World.
[42] Guillaume Hanrot,et al. Primality Proving with Elliptic Curves , 2007, TPHOLs.
[43] Benjamin Grégoire,et al. A Computational Approach to Pocklington Certificates in Type Theory , 2006, FLOPS.
[44] F. Klaedtke. On the automata size for Presburger arithmetic , 2004, LICS 2004.
[45] John Harrison,et al. A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.
[46] Robert S. Boyer,et al. Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. , 1979 .
[47] William M. Farmer. Biform Theories in Chiron , 2007, Calculemus/MKM.
[48] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[49] J. Risler,et al. Real algebraic and semi-algebraic sets , 1990 .
[50] Markus Wenzel,et al. Constructive Type Classes in Isabelle , 2006, TYPES.
[51] Volker Weispfenning,et al. Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.
[52] Clemens Ballarin. Locales and Locale Expressions in Isabelle/Isar , 2003, TYPES.
[53] Leonard Berman,et al. Precise bounds for presburger arithmetic and the reals with addition: Preliminary report , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[54] Xiao-Shan Gao,et al. Automated Reasoning in Geometry , 2001, Handbook of Automated Reasoning.
[55] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..
[56] Ernst W. Mayr,et al. Some Complexity Results for Polynomial Ideals , 1997, J. Complex..
[57] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..
[58] Deepak Kapur,et al. Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets , 1996, Automated Deduction in Geometry.
[59] Tom Melham,et al. Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings , 2005, TPHOLs.
[60] J. Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .
[61] Assia Mahboubi,et al. Proving Formally the Implementation of an Efficient gcd Algorithm for Polynomials , 2006, IJCAR.
[62] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[63] David Delahaye,et al. A Proof Dedicated Meta-Language , 2002, LFM.
[64] Grete Hermann,et al. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .
[65] Volker Weispfenning,et al. Parametric linear and quadratic optimization by elimina-tion , 1994 .
[66] M. Davis. A Computer Program for Presburger’s Algorithm , 1983 .
[67] John H. Reif,et al. The complexity of elementary algebra and geometry , 1984, STOC '84.
[68] John Harrison,et al. A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.
[69] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[70] Context aware Calculation and Deduction Ring Equalities via Gröbner Bases in Isabelle , 2007 .
[71] Derek C. Oppen,et al. Elementary bounds for presburger arithmetic , 1973, STOC.
[72] Chang Liu,et al. Term rewriting and all that , 2000, SOEN.
[73] Tobias Nipkow,et al. Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic , 2005, LPAR.
[74] G. Kreisel,et al. Elements of Mathematical Logic: Model Theory , 1971 .
[75] John Harrison. Complex quantifier elimination in HOL , 2001 .
[76] D. Hilbert. Über die Theorie der algebraischen Formen , 1890 .
[77] Clemens Ballarin,et al. Interpretation of Locales in Isabelle: Theories and Proof Contexts , 2006, MKM.
[78] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate , 1927 .
[79] H. R. Wüthrich,et al. Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.
[80] C. Ballarin. Computer Algebra and Theorem Proving , 1999 .
[81] Andrew W. Appel,et al. Dependent types ensure partial correctness of theorem provers , 2004, J. Funct. Program..
[82] Volker Weispfenning,et al. Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.
[83] J. Ferrante,et al. The computational complexity of logical theories , 1979 .
[84] Morten Welinder. Very Efficient Conversions , 1995, TPHOLs.
[85] Dima Grigoriev,et al. Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..
[86] V. Powers,et al. An algorithm for sums of squares of real polynomials , 1998 .
[87] Florian Kammüller,et al. Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.
[88] Markus Wenzel,et al. Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.
[89] John Harrison,et al. Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.
[90] Bruce Reznick,et al. Sums of squares of real polynomials , 1995 .
[91] Julia Robinson,et al. Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.
[92] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[93] D. Grigor'ev. Complexity of deciding Tarski algebra , 1988 .
[94] Hirokazu Anai,et al. Deciding linear-trigonometric problems , 2000, ISSAC.
[95] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[96] Amine Chaieb,et al. Verifying Mixed Real-Integer Quantifier Elimination , 2006, IJCAR.
[97] L. M. Milne-Thomson,et al. Grundlagen der Mathematik , 1935, Nature.
[98] Michael J. Maher,et al. Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.
[99] Markus Wenzel,et al. Isabelle, Isar - a versatile environment for human readable formal proof documents , 2002 .
[100] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[101] Alexander Krauss. Partial Recursive Functions in Higher-Order Logic , 2006, IJCAR.
[102] Volker Weispfenning,et al. Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.
[103] David L. Dill,et al. Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods , 2002, FMCAD.
[104] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[105] Hendrik Pieter Barendregt,et al. Autarkic Computations in Formal Proofs , 2002, Journal of Automated Reasoning.
[106] V. Weispfenning. A New Approach to Quantifier Elimination for Real Algebra , 1998 .
[107] A. Seidenberg. Constructions in algebra , 1974 .
[108] Manuel Kauers,et al. Towards Mechanized Mathematical Assistants, 14th Symposium, Calculemus 2007, 6th International Conference, MKM 2007, Hagenberg, Austria, June 27-30, 2007, Proceedings , 2007, Calculemus/MKM.
[109] Michael Norrish. Complete Integer Decision Procedures as Derived Rules in HOL , 2003, TPHOLs.
[110] Cezary Kaliszyk,et al. Certified Computer Algebra on Top of an Interactive Theorem Prover , 2007, Calculemus/MKM.
[111] Alan P. Parkes. Logic and Computation , 2002 .
[112] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[113] Reinhard Bündgen. Simulation Buchberger's Algorithm by Knuth-Bendix Completion , 1991, RTA.
[114] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[115] Fred Richman,et al. Constructive aspects of Noetherian rings , 1974 .
[116] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[117] Amine Chaieb,et al. Mechanized quantifier elimination for linear real-arithmetic in Isabelle / HOL , 2006 .
[118] Volker Weispfenning. The Complexity of Almost Linear Diophantine Problems , 1990, J. Symb. Comput..
[119] Larry Wos,et al. What Is Automated Reasoning? , 1987, J. Autom. Reason..
[120] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[121] Aaron Stump,et al. Validated Proof-Producing Decision Procedures , 2005, Electron. Notes Theor. Comput. Sci..
[122] Lawrence C. Paulson,et al. Logic And Computation , 1987 .
[123] David L. Dill,et al. An Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic , 2003, TACAS.
[124] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .
[125] Pierre Wolper,et al. An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.
[126] John Harrison. Automating Elementary Number-Theoretic Proofs Using Gröbner Bases , 2007, CADE.
[127] Thomas Sturm,et al. A New Approach for Automatic Theorem Proving in Real Geometry , 1998, Journal of Automated Reasoning.
[128] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[129] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[130] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[131] Dima Grigoriev,et al. Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..
[132] Donald W. Loveland,et al. Presburger arithmetic with bounded quantifier alternation , 1978, STOC.
[133] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[134] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[135] Bruno Barras. Programming and Computing in HOL , 2000, TPHOLs.
[136] Tobias Nipkow,et al. Proof Synthesis and Reflection for Linear Arithmetic , 2008, Journal of Automated Reasoning.
[137] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.
[138] Andrei Voronkov,et al. Handbook of Automated Reasoning: Volume 1 , 2001 .
[139] J. Strother Moore,et al. An Industrial Strength Theorem Prover for a Logic Based on Common Lisp , 1997, IEEE Trans. Software Eng..
[140] Peter J Seiler,et al. SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .
[141] F. Wiedijk. The Seventeen Provers of the World , 2006 .
[142] D. Hilbert,et al. Ueber die vollen Invariantensysteme , 1893 .
[143] Steven Obua,et al. Proving Bounds for Real Linear Programs in Isabelle/HOL , 2005, TPHOLs.
[144] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[145] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[146] Joos Heintz,et al. An efficient quantifier elimination algorithm for algebraically closed fields of any characteristic , 1975, SIGS.