Standard Monomial Theory and applications
暂无分享,去创建一个
[1] C. S. Seshadri,et al. Standard monomial theory , 1981 .
[2] The nil Hecke ring and singularity of Schubert varieties , 1995, alg-geom/9503015.
[3] Armand Borel. Linear Algebraic Groups , 1991 .
[4] V. Lakshmibai. Tangent spaces to Schubert varieties , 1995 .
[5] Jerzy Weyman,et al. Multiplicities of points on a Schubert variety in a minuscule GP , 1990 .
[6] On the variety of complexes , 1981 .
[7] Chern class formulas for quiver varieties , 1998, math/9804041.
[8] O. Mathieu. Filtrations of $G$-modules , 1990 .
[9] P. Littelmann. Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras , 1998 .
[10] Sara Billey,et al. On the Singular Locus of a Schubert Variety , 1984 .
[11] C. S. Seshadri,et al. Geometry of GP−V , 1986 .
[12] R. Bott. A residue formula for holomorphic vector-fields , 1967 .
[13] S. Ramanan,et al. Projective normality of flag varieties and Schubert varieties , 1985 .
[14] M. Kashiwara. Crystal bases of modified quantized enveloping algebra , 1994 .
[15] Peter Littelmann,et al. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .
[16] S. P. Inamdar,et al. Frobenius Splitting of Schubert Varieties and Linear Syzygies , 1994 .
[17] P. Podles,et al. Introduction to Quantum Groups , 1998 .
[18] V. Lakshmibai. Singular loci of Schubert varieties for classical groups , 1987 .
[19] Shrawan Kumar. Demazure character formula in arbitrary Kac-Moody setting , 1987 .
[20] Peter Littelmann,et al. A Plactic Algebra for Semisimple Lie Algebras , 1996 .
[21] V. Lakshmibai. On Tangent Spaces to Schubert Varieties, II , 2000 .
[22] Melvin Hochster,et al. Invariant theory and the generic perfection of determinantal loci , 1971 .
[23] Degeneracy Schemes and Schubert Varieties , 1997, alg-geom/9709018.
[24] A. W. Knapp,et al. Representation Theory and Automorphic Forms , 1997 .
[25] C. Musili,et al. Geometry of $G/P$ , 1979 .
[26] A. Ramanathan. Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .
[27] V. Lakshmibai,et al. Singular Loci of Ladder Determinantal Varieties and Schubert Varieties , 2000 .
[28] R. Carter,et al. INTRODUCTION TO QUANTUM GROUPS (Progress in Mathematics 110) , 1995 .
[29] Standard Monomial Theory for Bott-Samelson Varieties of GL(n) , 1998 .
[30] Raoul Bott,et al. Applications of the Theory of Morse to Symmetric Spaces , 1958 .
[31] V. LAKSHMIBAIAbstract. Degenerations of Flag and Schubert Varieties to Toric Varieties , 1996 .
[32] Peter Littelmann,et al. Paths and root operators in representation theory , 1995 .
[33] S Abeasis,et al. Degenerations for the representations of a quiver of type Am , 1985 .
[34] Shreeram S. Abhyankar,et al. Enumerative Combinatorics of Young Tableaux , 1988 .
[35] V. Lakshmibai,et al. Standard Monomial Theory for Bott–Samelson Varieties , 1997, Compositio Mathematica.
[36] V Lakshmibai,et al. Criterion for smoothness of Schubert varieties in Sl(n)/B , 1990 .
[37] P. M. Cohn. GROUPES ET ALGÉBRES DE LIE , 1977 .
[38] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .
[39] C. S. Seshadri,et al. Geometry of G/P-II [The work of De Concini and Procesi and the basic conjectures] , 1978 .
[40] A. Schubert. Universal Schubert polynomials , 1999 .
[41] P. Polo. On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar , 1994 .
[42] Michel Demazure,et al. Désingularisation des variétés de Schubert généralisées , 1974 .
[43] S. Mulay. Determinantal loci and the flag variety , 1989 .
[44] C. S. Seshadri,et al. Schubert Varieties and the Variety of Complexes , 1983 .