Standard Monomial Theory and applications

In these notes, we explain how one can construct Standard Monomial Theory for reductive algebraic groups by using the path models of their representations and quantum groups at a root of unity. As applications, we obtain a combinatorial proof of the Demazure character formula and representation theoretic proofs of geometrical properties of Schubert varieties, such as normality, vanishing theorems, ideal theory and so on. Further applications of Standard Monomial Theory are made to prove geometrical properties of certain ladder determinantal varieties and certain quiver varieties. We sketch at the end an extension of the theory to Bott-Samelson varieties and configuration varieties.

[1]  C. S. Seshadri,et al.  Standard monomial theory , 1981 .

[2]  The nil Hecke ring and singularity of Schubert varieties , 1995, alg-geom/9503015.

[3]  Armand Borel Linear Algebraic Groups , 1991 .

[4]  V. Lakshmibai Tangent spaces to Schubert varieties , 1995 .

[5]  Jerzy Weyman,et al.  Multiplicities of points on a Schubert variety in a minuscule GP , 1990 .

[6]  On the variety of complexes , 1981 .

[7]  Chern class formulas for quiver varieties , 1998, math/9804041.

[8]  O. Mathieu Filtrations of $G$-modules , 1990 .

[9]  P. Littelmann Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras , 1998 .

[10]  Sara Billey,et al.  On the Singular Locus of a Schubert Variety , 1984 .

[11]  C. S. Seshadri,et al.  Geometry of GP−V , 1986 .

[12]  R. Bott A residue formula for holomorphic vector-fields , 1967 .

[13]  S. Ramanan,et al.  Projective normality of flag varieties and Schubert varieties , 1985 .

[14]  M. Kashiwara Crystal bases of modified quantized enveloping algebra , 1994 .

[15]  Peter Littelmann,et al.  A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .

[16]  S. P. Inamdar,et al.  Frobenius Splitting of Schubert Varieties and Linear Syzygies , 1994 .

[17]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[18]  V. Lakshmibai Singular loci of Schubert varieties for classical groups , 1987 .

[19]  Shrawan Kumar Demazure character formula in arbitrary Kac-Moody setting , 1987 .

[20]  Peter Littelmann,et al.  A Plactic Algebra for Semisimple Lie Algebras , 1996 .

[21]  V. Lakshmibai On Tangent Spaces to Schubert Varieties, II , 2000 .

[22]  Melvin Hochster,et al.  Invariant theory and the generic perfection of determinantal loci , 1971 .

[23]  Degeneracy Schemes and Schubert Varieties , 1997, alg-geom/9709018.

[24]  A. W. Knapp,et al.  Representation Theory and Automorphic Forms , 1997 .

[25]  C. Musili,et al.  Geometry of $G/P$ , 1979 .

[26]  A. Ramanathan Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .

[27]  V. Lakshmibai,et al.  Singular Loci of Ladder Determinantal Varieties and Schubert Varieties , 2000 .

[28]  R. Carter,et al.  INTRODUCTION TO QUANTUM GROUPS (Progress in Mathematics 110) , 1995 .

[29]  Standard Monomial Theory for Bott-Samelson Varieties of GL(n) , 1998 .

[30]  Raoul Bott,et al.  Applications of the Theory of Morse to Symmetric Spaces , 1958 .

[31]  V. LAKSHMIBAIAbstract Degenerations of Flag and Schubert Varieties to Toric Varieties , 1996 .

[32]  Peter Littelmann,et al.  Paths and root operators in representation theory , 1995 .

[33]  S Abeasis,et al.  Degenerations for the representations of a quiver of type Am , 1985 .

[34]  Shreeram S. Abhyankar,et al.  Enumerative Combinatorics of Young Tableaux , 1988 .

[35]  V. Lakshmibai,et al.  Standard Monomial Theory for Bott–Samelson Varieties , 1997, Compositio Mathematica.

[36]  V Lakshmibai,et al.  Criterion for smoothness of Schubert varieties in Sl(n)/B , 1990 .

[37]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[38]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[39]  C. S. Seshadri,et al.  Geometry of G/P-II [The work of De Concini and Procesi and the basic conjectures] , 1978 .

[40]  A. Schubert Universal Schubert polynomials , 1999 .

[41]  P. Polo On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar , 1994 .

[42]  Michel Demazure,et al.  Désingularisation des variétés de Schubert généralisées , 1974 .

[43]  S. Mulay Determinantal loci and the flag variety , 1989 .

[44]  C. S. Seshadri,et al.  Schubert Varieties and the Variety of Complexes , 1983 .