Systematics of q anti-q states in the (n, M**2) and (J, M**2) planes

In the mass region up to $Ml2400$ MeV we systematize mesons on the plots ${(n,M}^{2})$ and ${(J,M}^{2}),$ thus setting their classification in terms of ${n}^{2S+1}{L}_{J}q\overline{q}$ states. The trajectories on the ${(n,M}^{2})$ plots are drawn for the following ${(IJ}^{\mathrm{PC}})$ states: ${a}_{0}{(10}^{++}),$ ${a}_{1}{(11}^{++}),$ ${a}_{2}{(12}^{++}),$ ${a}_{3}{(13}^{++}),$ ${a}_{4}{(14}^{++}),$ $\ensuremath{\pi}{(10}^{\ensuremath{-}+}),$ ${\ensuremath{\pi}}_{2}{(12}^{\ensuremath{-}+}),$ $\ensuremath{\eta}{(00}^{\ensuremath{-}+}),$ ${\ensuremath{\eta}}_{2}{(02}^{\ensuremath{-}+}),$ ${h}_{1}{(01}^{+\ensuremath{-}}),$ $\ensuremath{\omega}{(01}^{\ensuremath{-}\ensuremath{-}})/$$\ensuremath{\varphi}{(01}^{\ensuremath{-}\ensuremath{-}}),$ $\ensuremath{\rho}{(11}^{\ensuremath{-}\ensuremath{-}}),$ ${f}_{0}{(00}^{++}),$ ${f}_{2}{(02}^{++}).$ All trajectories are linear, with nearly the same slopes. At the ${(J,M}^{2})$ plot we set out meson states for leading and daughter trajectories: for $\ensuremath{\pi},$ $\ensuremath{\rho},$ ${a}_{1},$ ${a}_{2}$ and ${P}^{\ensuremath{'}}.$