Detecting beyond the standard model interactions of solar neutrinos in low-threshold dark matter detectors

As low-threshold dark matter detectors advance in development, they will become sensitive to recoils from solar neutrinos which opens up the possibility to explore neutrino properties. We predict the enhancement of the event rate of solar neutrino scattering from Beyond the Standard Model interactions in low-threshold DM detectors, with a focus on silicon, germanium, gallium arsenide, xenon, and argon-based detectors. We consider a set of general neutrino interactions, which fall into five categories: the neutrino magnetic moment as well as interactions mediated by four types of mediators (scalar, pseudoscalar, vector, and axial vector), and consider coupling these mediators to either quarks or electrons. Using these predictions, we place constraints on the mass and couplings of each mediator and the neutrino magnetic moment from current low-threshold detectors like SENSEI, Edelweiss, and SuperCDMS, as well as projections relevant for future experiments such as DAMIC-M, Oscura, Darwin, and ARGO. We find that such low-threshold detectors can improve current constraints by up to two orders of magnitude for vector mediators and one order of magnitude for scalar mediators.

[1]  Yu-Feng Li,et al.  Constraining light mediators via detection of coherent elastic solar neutrino nucleus scattering , 2022, Nuclear Physics B.

[2]  R. Srivastava,et al.  Dark matter detectors as a novel probe for light new physics , 2021, Physical Review D.

[3]  Heidelberg,et al.  Novel constraints on neutrino physics beyond the standard model from the CONUS experiment , 2021, Journal of High Energy Physics.

[4]  D. Papoulias,et al.  Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  R. Harnik,et al.  The physics potential of a reactor neutrino experiment with Skipper-CCDs: searching for new physics with light mediators , 2021, Journal of High Energy Physics.

[6]  Tokyo,et al.  DARWIN – a next-generation liquid xenon observatory for dark matter and neutrino physics , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[7]  M. Mooney,et al.  A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST , 2021, Instruments.

[8]  J. Collar,et al.  Germanium response to sub-keV nuclear recoils: A multipronged experimental characterization , 2021, 2102.10089.

[9]  M. Xiao,et al.  Search for Light Dark Matter-Electron Scattering in the PandaX-II Experiment. , 2021, Physical review letters.

[10]  R. Leane,et al.  Supernova Muons: New Constraints on Z′ Bosons, Axions and ALPs , 2021, Journal of High Energy Physics.

[11]  V. C. Antochi,et al.  Excess electronic recoil events in XENON1T , 2020, Physical Review D.

[12]  R. Leane,et al.  Supernova Muons: New Constraints on Z′ Bosons, Axions and ALPs , 2020, 2006.13942.

[13]  V. Romeri,et al.  Light vector mediators facing XENON1T data , 2020, 2006.12457.

[14]  A. Vincent,et al.  Light new physics in XENON1T , 2020, Physical Review D.

[15]  P. Dev,et al.  Neutrino nonstandard interactions via light scalars in the Earth, Sun, supernovae, and the early Universe , 2020 .

[16]  J. Estrada,et al.  Absolute measurement of the Fano factor using a Skipper-CCD , 2020, 2004.11499.

[17]  A. Drlica-Wagner,et al.  SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.

[18]  K. Ramanathan,et al.  Ionization yield in silicon for eV-scale electron-recoil processes , 2020, 2004.10709.

[19]  B. Paul,et al.  First Germanium-Based Constraints on Sub-MeV Dark Matter with the EDELWEISS Experiment. , 2020, Physical review letters.

[20]  A. Aguilar-Arevalo,et al.  A Study of the Ionization Efficiency for Nuclear Recoils in Pure Crystals , 2020, Physics of Atomic Nuclei.

[21]  B. Dutta,et al.  Coherent elastic neutrino-nucleus scattering in multi-ton scale dark matter experiments: classification of vector and scalar interactions new physics signals , 2019, Journal of High Energy Physics.

[22]  B. Kilminster,et al.  Light vector mediator search in the low-energy data of the CONNIE reactor neutrino experiment , 2019, 1910.04951.

[23]  V. C. Antochi,et al.  Light Dark Matter Search with Ionization Signals in XENON1T. , 2019, Physical Review Letters.

[24]  S. Jana,et al.  Neutrino non-standard interactions: A status report , 2019, SciPost Physics Proceedings.

[25]  W. Rodejohann,et al.  General neutrino interactions from an effective field theory perspective , 2019, Nuclear Physics B.

[26]  B. Paul,et al.  Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground , 2019, Physical Review D.

[27]  S. Parke,et al.  Scalar Nonstandard Interactions in Neutrino Oscillation. , 2018, Physical review letters.

[28]  P. Machado,et al.  How high is the neutrino floor? , 2018, Journal of Cosmology and Astroparticle Physics.

[29]  V. Romeri,et al.  COHERENT analysis of neutrino generalized interactions , 2018, Physical Review D.

[30]  P. Denton,et al.  A Plan to Rule out Large Non-Standard Neutrino Interactions After COHERENT Data , 2018, 1804.03660.

[31]  M. Gonzalez-Garcia,et al.  Neutrino discovery limit of Dark Matter direct detection experiments in the presence of non-standard interactions , 2018, Journal of High Energy Physics.

[32]  G. B. Suffritti,et al.  Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.

[33]  R. Essig,et al.  submitter : Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils , 2018, 1801.10159.

[34]  M. Tytgat,et al.  Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors , 2017, 1712.09667.

[35]  Betty A. Young,et al.  Thermal detection of single e-h pairs in a biased silicon crystal detector , 2017, 1710.09335.

[36]  D. Marfatia,et al.  COHERENT constraints on nonstandard neutrino interactions , 2017, 1708.04255.

[37]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[38]  A. D. Ludovico,et al.  Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data , 2017, 1707.09355.

[39]  Alex Drlica-Wagner,et al.  Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD. , 2017, Physical review letters.

[40]  Edward L. Hardy,et al.  Stellar cooling bounds on new light particles: plasma mixing effects , 2016, Journal of High Energy Physics.

[41]  Jiunn-Wei Chen,et al.  Low-energy electronic recoil in xenon detectors by solar neutrinos , 2016, 1610.04177.

[42]  P. Privitera,et al.  Measurement of the low-energy quenching factor in germanium using an $^{88}$Y/Be photoneutron source , 2016, 1608.03588.

[43]  J. Estrada,et al.  Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector , 2016, 1608.00957.

[44]  A. Vincent,et al.  Physics from solar neutrinos in dark matter direct detection experiments , 2016, 1604.01025.

[45]  M. Fernández-Serra,et al.  Direct detection of sub-GeV dark matter with semiconductor targets , 2015, 1509.01598.

[46]  O. Miranda,et al.  Non standard neutrino interactions: current status and future prospects , 2015, 1505.06254.

[47]  Fei Gao,et al.  Scintillation and ionization responses of liquid xenon to low energy electronic and nuclear recoils at drift fields from 236 V/cm to 3.93 kV/cm , 2015, 1505.00517.

[48]  T. Aliev,et al.  Constraints on Dark Photon from Neutrino-Electron Scattering Experiments , 2015, 1502.07763.

[49]  J. Heeck Unbroken B – L symmetry , 2014, 1408.6845.

[50]  M. Tripathi,et al.  Enhancement of NEST Capabilities for Simulating Low-Energy Recoils in Liquid Xenon , 2013, 1307.6601.

[51]  KIPACStanford,et al.  Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments , 2013, 1307.5458.

[52]  V. Pogosov,et al.  Gemma experiment: The results of neutrino magnetic moment search , 2013, Physics of Particles and Nuclei Letters.

[53]  P. Sorensen,et al.  First direct detection limits on sub-GeV dark matter from XENON10. , 2012, Physical review letters.

[54]  R. Harnik,et al.  Exploring ν signals in dark matter detectors , 2012, 1202.6073.

[55]  L. Krauss,et al.  Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling , 2012, 1201.2683.

[56]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[57]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[58]  E. al.,et al.  Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor , 2009, 0911.1597.

[59]  M. Pospelov,et al.  Exploring Portals to a Hidden Sector Through Fixed Targets , 2009, 0906.5614.

[60]  A. Starostin,et al.  Gemma experiment: Three years of the search for the neutrino magnetic moment , 2009, 0906.1926.

[61]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[62]  P. Schuster,et al.  Probing dark forces and light hidden sectors at low-energy e+e- colliders , 2009, 0903.3941.

[63]  A. Mirizzi,et al.  Microwave Background Constraints on Mixing of Photons with Hidden Photons , 2008, 0901.0014.

[64]  M. Pospelov Secluded U(1) below the weak scale , 2008, 0811.1030.

[65]  L. Cadonati,et al.  New results on solar neutrino fluxes from 192 days of Borexino data , 2008 .

[66]  R. Hartmann,et al.  Probing eV-scale axions with CAST , 2008, 0810.4482.

[67]  L. Cadonati,et al.  Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data. , 2008, Physical review letters.

[68]  J. Redondo Helioscope bounds on hidden sector photons , 2008, 0801.1527.

[69]  M. Ahlers,et al.  Laser experiments explore the hidden sector , 2007, 0711.4991.

[70]  C. Hoyle,et al.  Particle-physics implications of a recent test of the gravitational inverse-square law. , 2006, Physical review letters.

[71]  A. Nelson,et al.  New regions for a chameleon to hide , 2006, hep-ph/0603057.

[72]  E. al.,et al.  Final report of the E821 muon anomalous magnetic moment measurement at BNL , 2006, hep-ex/0602035.

[73]  S. Basu,et al.  New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes , 2004, astro-ph/0412440.

[74]  A. Serenelli,et al.  How Do Uncertainties in the Surface Chemical Composition of the Sun Affect the Predicted Solar Neutrino Fluxes? , 2004, astro-ph/0412096.

[75]  A. Hitachi,et al.  Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles , 2002 .

[76]  U. Mohideen,et al.  New developments in the Casimir effect , 2001, quant-ph/0106045.

[77]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[78]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[79]  Bartlett,et al.  Limits on an electromagnetic fifth force. , 1988, Physical review letters.

[80]  Thomas,et al.  Recombination of electron-ion pairs in liquid argon and liquid xenon. , 1987, Physical review. A, General physics.

[81]  D. A. Cusano Radiative recombination from GaAs directly excited by electron beams , 1964 .

[82]  V. S. Vavilov Special Issue: Radiation Ionization Processes in Germanium and Silicon Crystals , 1962 .

[83]  ournal of C osmology and A stroparticle P hysics J How high is the neutrino floor? , 2022 .