A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium

Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks.

[1]  Jay Shendure,et al.  Genome-Scale Identification of Resistance Functions in Pseudomonas aeruginosa Using Tn-seq , 2011, mBio.

[2]  F. Crick Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of molecular biology.

[3]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[4]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[5]  S. Osawa,et al.  Recent evidence for evolution of the genetic code , 1992, Microbiological reviews.

[6]  S. Nair,et al.  Multidrug-Resistant Salmonella enterica Serovar Paratyphi A Harbors IncHI1 Plasmids Similar to Those Found in Serovar Typhi , 2007, Journal of bacteriology.

[7]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[8]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[9]  Hirotada Mori,et al.  Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35‐amino‐acid cell‐killing peptide and a cis‐encoded small antisense RNA in Escherichia coli , 2002, Molecular microbiology.

[10]  T. Fuchs,et al.  Large‐scale identification of essential Salmonella genes by trapping lethal insertions , 2004, Molecular microbiology.

[11]  J. Wain,et al.  Composition, Acquisition, and Distribution of the Vi Exopolysaccharide-Encoding Salmonella enterica Pathogenicity Island SPI-7 , 2003, Journal of bacteriology.

[12]  A. Kothari,et al.  The burden of enteric fever. , 2008, Journal of infection in developing countries.

[13]  N. Larsen,et al.  Kinship in the SRP RNA family , 2009, RNA biology.

[14]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[15]  P. Bouloc,et al.  Down-regulation of Porins by a Small RNA Bypasses the Essentiality of the Regulated Intramembrane Proteolysis Protease RseP in Escherichia coli* , 2006, Journal of Biological Chemistry.

[16]  Jeremy D. Glasner,et al.  Systematic Mutagenesis of the Escherichia coli Genome , 2004, Journal of bacteriology.

[17]  F. Heffron,et al.  Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse , 1996, Infection and immunity.

[18]  H. Ochman,et al.  Genome-wide detection of novel regulatory RNAs in E. coli. , 2011, Genome research.

[19]  M. F. Edwards,et al.  Construction of delta aroA his delta pur strains of Salmonella typhi , 1988, Journal of bacteriology.

[20]  F. Briani,et al.  The plasmid status of satellite bacteriophage P4. , 2001, Plasmid.

[21]  Z. Bhutta,et al.  Addressing the global disease burden of typhoid fever. , 2009, JAMA.

[22]  S. Gottesman,et al.  MicA sRNA links the PhoP regulon to cell envelope stress , 2010, Molecular microbiology.

[23]  Torsten Waldminghaus,et al.  FourU: a novel type of RNA thermometer in Salmonella , 2007, Molecular microbiology.

[24]  R. Griffey,et al.  A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. , 2002, Bio Systems.

[25]  J. Wain,et al.  Quantitation of Bacteria in Blood of Typhoid Fever Patients and Relationship between Counts and Clinical Features, Transmissibility, and Antibiotic Resistance , 1998, Journal of Clinical Microbiology.

[26]  Gordon Dougan,et al.  Molecular and Phenotypic Analysis of the CS54 Island of Salmonella enterica Serotype Typhimurium: Identification of Intestinal Colonization and Persistence Determinants , 2003, Infection and Immunity.

[27]  N. Datta Transmissible drug resistance in an epidemic strain of Salmonella typhimurium , 1962, Journal of Hygiene.

[28]  I. Dragoni,et al.  Characterization of the small antisense CI RNA that regulates bacteriophage P4 immunity. , 2002, Journal of molecular biology.

[29]  H. Echols,et al.  Establishment and Maintenance of Repression by Bacteriophage Lambda: The Role of the cI, cII, and cIII Proteins , 1971 .

[30]  J. Vogel,et al.  Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes , 2009, RNA biology.

[31]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[32]  P. Youderian,et al.  Global Regulation of the Salmonella enterica Serovar Typhimurium Major Porin, OmpD , 2003, Journal of bacteriology.

[33]  Kristian Händler,et al.  sRNAs and the virulence of Salmonella enterica serovar Typhimurium , 2012, RNA biology.

[34]  Georgia Giannoukos,et al.  Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung , 2009, Proceedings of the National Academy of Sciences.

[35]  C. Gross,et al.  SigmaE is an essential sigma factor in Escherichia coli , 1997, Journal of bacteriology.

[36]  T. Elliott,et al.  Limited Role for the DsrA and RprA Regulatory RNAs in rpoS Regulation in Salmonella enterica , 2006, Journal of bacteriology.

[37]  Shane C. Dillon,et al.  Genome‐wide analysis of the H‐NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid‐encoded transcription silencing mechanism , 2010, Molecular microbiology.

[38]  Gábor Balázsi,et al.  Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. , 2004, Biochemical and biophysical research communications.

[39]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[40]  R. Curtiss,et al.  Plasmid-associated virulence of Salmonella typhimurium , 1987, Infection and immunity.

[41]  S. Falkow,et al.  Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2 , 1997, Molecular microbiology.

[42]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[43]  Henri Grosjean,et al.  tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. , 2002, RNA.

[44]  M. Cusick,et al.  Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Porwollik,et al.  Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high‐density DNA binding proteins , 2007, Molecular microbiology.

[46]  J. Vogel,et al.  Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation , 2008, PLoS biology.

[47]  S. Nair,et al.  Variation in Salmonella enterica Serovar Typhi IncHI1 Plasmids during the Global Spread of Resistant Typhoid Fever , 2008, Antimicrobial Agents and Chemotherapy.

[48]  L. Bossi,et al.  Bacteriophage Crosstalk: Coordination of Prophage Induction by Trans-Acting Antirepressors , 2011, PLoS genetics.

[49]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[50]  J. Vogel,et al.  Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP‐dependent riboregulator of OmpX synthesis , 2008, Molecular microbiology.

[51]  Zasha Weinberg,et al.  Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.

[52]  Aamir Fazil,et al.  The global burden of nontyphoidal Salmonella gastroenteritis. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[53]  Eduardo Abeliuk,et al.  The essential genome of a bacterium , 2011, Molecular systems biology.

[54]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[55]  H. Seth-Smith SPI-7: Salmonella's Vi-encoding Pathogenicity Island. , 2008, Journal of infection in developing countries.

[56]  D. Gautheret,et al.  Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation , 2010, Genome Biology.

[57]  Amy K. Cain,et al.  Evolution of a multiple antibiotic resistance region in IncHI1 plasmids: reshaping resistance regions in situ. , 2012, Journal of Antimicrobial Chemotherapy.

[58]  G. Storz,et al.  Small RNAs and Small Proteins Involved in Resistance to Cell Envelope Stress and Acid Shock in Escherichia coli: Analysis of a Bar-Coded Mutant Collection , 2009, Journal of bacteriology.

[59]  H. Ochman,et al.  Identification of a pathogenicity island required for Salmonella survival in host cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Hinton H-NS mediates the silencing of laterally acquired genes in bacteria (vol 2, pg 746, 2006) , 2007 .

[61]  S. J. Nasvall,et al.  The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. , 2004, RNA.

[62]  S. Miller,et al.  A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Rob Knight,et al.  Identifying genetic determinants needed to establish a human gut symbiont in its habitat. , 2009, Cell host & microbe.

[64]  K. Darwin,et al.  Molecular Basis of the Interaction ofSalmonella with the Intestinal Mucosa , 1999, Clinical Microbiology Reviews.

[65]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[66]  J. Shea,et al.  Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[68]  P. Gulig,et al.  The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice , 1993, Infection and immunity.

[69]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[70]  L. Aravind,et al.  The HIRAN Domain and Recruitment of Chromatin Remodeling and Repair activities to Damaged DNA , 2006, Cell cycle.

[71]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[72]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[73]  J. Crump,et al.  The global burden of typhoid fever. , 2004, Bulletin of the World Health Organization.

[74]  J. Belasco,et al.  An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. , 2000, Genes & development.

[75]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[76]  N. Pace,et al.  Ribonuclease P: unity and diversity in a tRNA processing ribozyme. , 1998, Annual review of biochemistry.

[77]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[78]  J. Wain,et al.  The role of prophage-like elements in the diversity of Salmonella enterica serovars. , 2004, Journal of molecular biology.

[79]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[80]  Suresh V. Chinni,et al.  Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi , 2010, Nucleic acids research.

[81]  S. Porwollik,et al.  Analysis of Pools of Targeted Salmonella Deletion Mutants Identifies Novel Genes Affecting Fitness during Competitive Infection in Mice , 2009, PLoS pathogens.

[82]  P. Sabbattini,et al.  Control of transcription termination by an RNA factor in bacteriophage P4 immunity: identification of the target sites , 1995, Journal of bacteriology.

[83]  J. Vogel,et al.  An atlas of Hfq‐bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs , 2012, The EMBO journal.

[84]  Pimlapas Leekitcharoenphon,et al.  The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium , 2012, Proceedings of the National Academy of Sciences.

[85]  J. Shea,et al.  Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages , 1998, Molecular microbiology.

[86]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[87]  G. Dougan,et al.  Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences , 2001, Infection and Immunity.

[88]  N. Ravin,et al.  The anti‐immunity system of phage‐plasmid N15: identification of the antirepressor gene and its control by a small processed RNA , 1999, Molecular microbiology.

[89]  J. Wain,et al.  An H-NS-like Stealth Protein Aids Horizontal DNA Transmission in Bacteria , 2007, Science.

[90]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[91]  C. Ehresmann,et al.  Pseudoknot and translational control in the expression of the S15 ribosomal protein , 1996, Biochimie.

[92]  M. Hensel,et al.  Effector Proteins Encoded by Salmonella Pathogenicity Island 2 Interfere with the Microtubule Cytoskeleton after Translocation into Host Cells , 2004, Traffic.

[93]  Samuel I. Miller,et al.  The Salmonella enterica Serovar Typhimurium Translocated Effectors SseJ and SifB Are Targeted to the Salmonella-Containing Vacuole , 2003, Infection and Immunity.

[94]  V. Bordeau,et al.  A Small Bacterial RNA Regulates a Putative ABC Transporter* , 2005, Journal of Biological Chemistry.

[95]  G. Soper The Curious Career of Typhoid Mary. , 1939, Bulletin of the New York Academy of Medicine.

[96]  R. L. Santos,et al.  Animal models of Salmonella infections: enteritis versus typhoid fever. , 2001, Microbes and infection.

[97]  H. Echols,et al.  Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII, and c3 proteins. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[98]  W. Rabsch,et al.  Salmonella typhimurium IroN and FepA Proteins Mediate Uptake of Enterobactin but Differ in Their Specificity for Other Siderophores , 1999, Journal of bacteriology.

[99]  Elena Rivas,et al.  Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.

[100]  I. Boni,et al.  A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo. , 2008, RNA.

[101]  C. Yanofsky,et al.  Nucleotide sequence of the leader region of the phenylalanine operon of Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[102]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[103]  J. Vogel,et al.  RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. , 2003, Nucleic acids research.

[104]  L. Bossi,et al.  A small RNA downregulates LamB maltoporin in Salmonella , 2007, Molecular microbiology.

[105]  Hiroshi Mizoguchi,et al.  Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome , 2004, Molecular microbiology.

[106]  A. Kropinski,et al.  Salmonella phages and prophages--genomics and practical aspects. , 2007, Methods in molecular biology.

[107]  Samuel I. Miller,et al.  SseJ Deacylase Activity by Salmonella enterica Serovar Typhimurium Promotes Virulence in Mice , 2005, Infection and Immunity.

[108]  Leopold Parts,et al.  Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. , 2009, Genome research.

[109]  Eduardo A. Groisman,et al.  An RNA Sensor for Intracellular Mg2+ , 2006, Cell.

[110]  M. Citron,et al.  The c4 repressors of bacteriophages P1 and P7 are antisense RNAs , 1990, Cell.

[111]  Hanah Margalit,et al.  Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence , 2008, Nucleic acids research.

[112]  J. Vogel A rough guide to the non‐coding RNA world of Salmonella , 2009, Molecular microbiology.

[113]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.