Chemical Abundances of the Secondary Star in the Black Hole X-Ray Binary XTE J1118+480

Following recent abundance measurements of Mg, Al, Ca, Fe, and Ni in the black hole X-ray binary XTE J1118+480 using medium-resolution Keck II ESI spectra of the secondary star, we perform a detailed abundance analysis including the abundances of Si and Ti. These element abundances, which are higher than solar, indicate that the black hole in this system formed in a supernova event, whose nucleosynthetic products could pollute the atmosphere of the secondary star, providing clues to the possible formation region of the system, either Galactic halo, thick disk, or thin disk. We explore a grid of explosion models with different He core masses, metallicities, and geometries. Metal-poor models associated with a formation scenario in the Galactic halo provide unacceptable fits to the observed abundances, allowing us to reject a halo origin for this X-ray binary. The thick-disk scenario produces better fits, although they require substantial fallback and very efficient mixing processes between the inner layers of the explosion and the ejecta, making an origin in the thick disk quite unlikely. The best agreement between model predictions and the observed abundances is obtained for metal-rich progenitor models. In particular, non-spherically symmetric models are able to explain, without strong assumptions of extensive fallback and mixing, the observed abundances. Moreover, asymmetric mass ejection in a supernova explosion could account for the required impulse necessary to launch the system from its formation region in the Galactic thin disk to its current halo orbit.

[1]  R. Rebolo,et al.  The black hole binary nova Scorpii 1994 (GRO J1655-40): an improved chemical analysis , 2007, 0705.2693.

[2]  K. Nomoto,et al.  Supernova Nucleosynthesis in Population III 13-50 M☉ Stars and Abundance Patterns of Extremely Metal-poor Stars , 2007, astro-ph/0701381.

[3]  T. Beers,et al.  Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3−2525) , 2006, astro-ph/0607015.

[4]  R. Chornock,et al.  XTE J1118+480: A Metal-rich Black Hole Binary in the Galactic Halo , 2006, astro-ph/0605107.

[5]  D. Gelino,et al.  The Inclination Angle and Mass of the Black Hole in XTE J1118+480 , 2006, astro-ph/0601409.

[6]  Observatoire de Geneve,et al.  Abundances of refractory elements in the atmospheres of stars with extrasolar planets , 2005, astro-ph/0512219.

[7]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[8]  Observatoire de Geneve,et al.  Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators , 2005, astro-ph/0509326.

[9]  E. L. Robinson,et al.  Observational Constraints on Cool Disk Material in Quiescent Black Hole Binaries , 2005, astro-ph/0507461.

[10]  P. Magain,et al.  Chemical abundances in 43 metal-poor stars , 2005, Proceedings of the International Astronomical Union.

[11]  R. Rebolo,et al.  Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4 , 2005, astro-ph/0504250.

[12]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[13]  M. Colpi,et al.  Has the Black Hole in XTE J1118+480 Experienced an Asymmetric Natal Kick? , 2004, astro-ph/0407502.

[14]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[15]  Observatoire de Geneve,et al.  C, S, Zn and Cu abundances in planet-harbouring stars , , 2004, astro-ph/0406584.

[16]  M. Garcia,et al.  MMT Observations of the Black Hole Candidate XTE J1118+480 near and in Quiescence , 2004, astro-ph/0405509.

[17]  G. Meynet,et al.  Chemical Abundances in the Secondary Star in the Black Hole Binary A0620–00 , 2004, astro-ph/0403402.

[18]  C. Prieto,et al.  S4N: A spectroscopic survey of stars in the solar neighborhood: The nearest 15 pc , 2004, astro-ph/0403108.

[19]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[20]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[21]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[22]  B. Schmidt,et al.  Formation of the Black Hole in Nova Scorpii , 2001, astro-ph/0109244.

[23]  P. Podsiadlowski,et al.  The quiescent light curve and the evolutionary state of GRO J1655–40 , 2001, astro-ph/0109136.

[24]  R. P. Mignani,et al.  A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood , 2001, Nature.

[25]  Dawn M. Gelino,et al.  A Multiwavelength, Multiepoch Study of the Soft X-Ray Transient Prototype, V616 Monocerotis (A0620−00)* , 2001 .

[26]  L. Amati,et al.  A Measurement of the Broadband Spectrum of XTE J1118+480 with BeppoSAX and Its Astrophysical Implications , 2001, astro-ph/0107199.

[27]  A. Robin,et al.  Early galaxy evolution from deep wide field star counts - II. First estimate of the thick disc mass function , 2001, astro-ph/0105199.

[28]  P. A. Charles,et al.  The Halo Black Hole X-Ray Transient XTE J1118+480 , 2001, astro-ph/0104032.

[29]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[30]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[31]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[32]  P. Mazzali,et al.  Explosive Nucleosynthesis in Aspherical Hypernova Explosions and Late-Time Spectra of SN 1998bw , 2000, astro-ph/0011003.

[33]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[34]  Janka,et al.  Nucleosynthesis and Clump Formation in a Core-Collapse Supernova. , 2000, The Astrophysical journal.

[35]  Eduardo L. Martin,et al.  Evidence of a supernova origin for the black hole in the system GRO J1655 - 40 , 1999, Nature.

[36]  B. Chen,et al.  Comparisons of a Galactic Kinematic Model with Two Proper-Motion Surveys in the Vicinity of the North Galactic Pole , 1997 .

[37]  E. L. Robinson,et al.  Spectroscopy of $A0620-00$: the mass of the black hole and an image of its accretion disc , 1994 .

[38]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[39]  W. Benz,et al.  Three-dimensional hydrodynamical simulations of colliding stars. III: Collisions and tidal captures of unequal-mass main-sequence stars , 1992 .

[40]  J. Hills Computer simulations of encounters between massive black holes and binaries , 1991 .

[41]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[42]  E. Heuvel,et al.  Observational lower mass limit for black hole formation derived from massive X-ray binaries , 1984, Nature.

[43]  J. Hills,et al.  The effects of sudden mass loss and a random kick velocity produced in a supernova explosion on the dynamics of a binary star of arbitrary orbital eccentricity - Applications to X-ray binaries and to the binary pulsars , 1983 .

[44]  W. M. Brunish,et al.  THE EVOLUTION OF MASSIVE STARS. II: THE INFLUENCE OF INITIAL COMPOSITION AND MASS LOSS , 1982 .

[45]  Dimitri Mihalas,et al.  Galactic Astronomy: Structure and Kinematics , 1981 .

[46]  H. Al-Naimiy Linearized limb-darkening coefficients for use in analysis of eclipsing binary light curves , 1978 .