Full paleostress tensor reconstruction using quartz veins of Panasqueira Mine, central Portugal; part I: Paleopressure determination

[1]  D. Jacques,et al.  Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal , 2018, Mineralium Deposita.

[2]  F. Stuart,et al.  Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology , 2015 .

[3]  A. Guedes,et al.  Quantitative Determination of Gaseous Phase Compositions in Fluid Inclusions by Raman Microspectrometry , 2012 .

[4]  G. Gutiérrez-Alonso,et al.  Diachronous post‐orogenic magmatism within a developing orocline in Iberia, European Variscides , 2011 .

[5]  P. Olivier,et al.  Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas) , 2010 .

[6]  M. Ribeiro,et al.  A nova Carta Geológica de Portugal à escala 1:1.000.000 e a importância da cartografia geológica de base , 2010 .

[7]  A. Yamaji,et al.  Stochastic modeling for the stress inversion of vein orientations: paleostress analysis of Pliocene epithermal veins in southwestern Kyushu, Japan , 2010 .

[8]  L. Diamond,et al.  Modification of fluid inclusions in quartz by deviatoric stress. II: experimentally induced changes in inclusion volume and composition , 2010 .

[9]  E. Klein,et al.  Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carará vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: Implications for orogenic gold mineralisation , 2010 .

[10]  A. Williams-Jones,et al.  Late-stage alteration and tin–tungsten mineralization in the Khuntan Batholith, northern Thailand , 2003 .

[11]  A. Neiva Portuguese granites associated with Sn-W and Au mineralizations , 2002 .

[12]  D. García-Castellanos,et al.  Lithospheric folding in Iberia , 2002 .

[13]  Alexandre Lourenço Paleofluidos e mineralizações associadas às fases tardias da Orogenia Hercínica , 2002 .

[14]  A. André,et al.  New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine graben, France) , 2001 .

[15]  A. V. D. Kerkhof,et al.  Fluid inclusion petrography , 2001 .

[16]  F. Stuart,et al.  Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions , 2000 .

[17]  D. Polya,et al.  Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal: evidence from vein spatial distributions, displacements and geometries , 2000 .

[18]  Seung-Jun Youm,et al.  COMPOSITIONAL VARIATION OF ARSENOPYRITE AND FLUID EVOLUTION AT THE ULSAN DEPOSIT, SOUTHEASTERN KOREA: A LOW-SULFIDATION PORPHYRY SYSTEM , 2000 .

[19]  R. Bakker Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system , 1999 .

[20]  D. Sanderson,et al.  A Mohr circle construction for the opening of a pre-existing fracture , 1997 .

[21]  Volker Lueders,et al.  Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .

[22]  John H. Weare,et al.  A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties , 1996 .

[23]  R. Bodnar,et al.  Textural evolution of synthetic fluid inclusions in quartz during reequilibration, with applications to tectonic reconstruction , 1995 .

[24]  C. Merlet An accurate computer correction program for quantitative electron probe microanalysis , 1994 .

[25]  Armanda Dória,et al.  Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal , 1992 .

[26]  Y. Koh,et al.  Application of arsenopyrite geothermometry and sphalerite geobarometry to the Taebaek Pb-Zn(-Ag) deposit at Yeonhwa I mine, Republic of Korea , 1992 .

[27]  L. Diamond Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapour + aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions ∗ , 1992 .

[28]  D. Polya,et al.  Textural evolution of W-Cu-Sn-bearing hydrothermal veins at Minas da Panasqueira, Portugal , 1991, Mineralogical Magazine.

[29]  J. Angelier Inversion directe et recherche 4-D : comparaison physique et mathématique de deux modes de détermination des tenseurs des paléocontraintes en tectonique de failles , 1991 .

[30]  R. Powell,et al.  Calculated mineral equilibria in the pelite system, KFMASH (K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O) , 1990 .

[31]  D. Polya Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis , 1989 .

[32]  J. Angelier From orientation to magnitudes in paleostress determinations using fault slip data , 1989 .

[33]  J. Sutter,et al.  Thermochronology of economic mineral deposits; dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40 / 39 Ar age spectrum techniques on muscovite , 1988 .

[34]  S. Parry,et al.  Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal , 1987 .

[35]  C. Derré,et al.  Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by SnW aplite-pegmatite and quartz veins; southeastern border of the Serra de Estrela granitic massif (Beira Baixa, Portugal) , 1986 .

[36]  Z. Sharp,et al.  A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages , 1985 .

[37]  F. Bergerat,et al.  Estimation des paléo-contraintes liées à la formation de décrochements dans la plate-forme d'Europe du Nord , 1985 .

[38]  S. Smeds,et al.  Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides , 1984 .

[39]  R. W. Bussink Geochemistry of the Panasqueira tungsten-tin deposit, Portugal , 1984 .

[40]  C. Gasparrini,et al.  Composition of arsenopyrite from topaz greisen veins in southeastern Missouri , 1982 .

[41]  W. Dollase,et al.  Composition of plutonic muscovite; genetic implications , 1981 .

[42]  S. Scott,et al.  Sphalerite geobarometry in the Cu-Fe-Zn-S system , 1981 .

[43]  L. Schermerhorn Framework and evolution of Hercynian mineralization in the Iberian Meseta , 1981 .

[44]  N. Boctor Sphalerite geobarometry in Bodenmais ore, Bavaria , 1980 .

[45]  T. K. Ekström,et al.  Arsenopyrite and sphalerite as T-P indicators in sulfide ores from northern Sweden , 1980 .

[46]  R. Bodnar,et al.  Geologic Pressure Determinations from Fluid Inclusion Studies , 1980 .

[47]  R. Rye,et al.  Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal , 1979 .

[48]  S. Scott,et al.  Phase relations involving arsenopyrite in the system Fe-As-S and their application , 1976 .

[49]  S. Scott Experimental Calibration of the Sphalerite Geobarometer , 1973 .

[50]  H. Barnes,et al.  Sphalerite geothermometry and geobarometry , 1971 .

[51]  A. Clark SULPHURIZATION OF CORDIERITE, MINAS DA PANASQUEIRA, PORTUGAL , 1969 .