Full paleostress tensor reconstruction using quartz veins of Panasqueira Mine, central Portugal; part I: Paleopressure determination
暂无分享,去创建一个
[1] D. Jacques,et al. Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal , 2018, Mineralium Deposita.
[2] F. Stuart,et al. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology , 2015 .
[3] A. Guedes,et al. Quantitative Determination of Gaseous Phase Compositions in Fluid Inclusions by Raman Microspectrometry , 2012 .
[4] G. Gutiérrez-Alonso,et al. Diachronous post‐orogenic magmatism within a developing orocline in Iberia, European Variscides , 2011 .
[5] P. Olivier,et al. Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas) , 2010 .
[6] M. Ribeiro,et al. A nova Carta Geológica de Portugal à escala 1:1.000.000 e a importância da cartografia geológica de base , 2010 .
[7] A. Yamaji,et al. Stochastic modeling for the stress inversion of vein orientations: paleostress analysis of Pliocene epithermal veins in southwestern Kyushu, Japan , 2010 .
[8] L. Diamond,et al. Modification of fluid inclusions in quartz by deviatoric stress. II: experimentally induced changes in inclusion volume and composition , 2010 .
[9] E. Klein,et al. Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carará vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: Implications for orogenic gold mineralisation , 2010 .
[10] A. Williams-Jones,et al. Late-stage alteration and tin–tungsten mineralization in the Khuntan Batholith, northern Thailand , 2003 .
[11] A. Neiva. Portuguese granites associated with Sn-W and Au mineralizations , 2002 .
[12] D. García-Castellanos,et al. Lithospheric folding in Iberia , 2002 .
[13] Alexandre Lourenço. Paleofluidos e mineralizações associadas às fases tardias da Orogenia Hercínica , 2002 .
[14] A. André,et al. New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine graben, France) , 2001 .
[15] A. V. D. Kerkhof,et al. Fluid inclusion petrography , 2001 .
[16] F. Stuart,et al. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions , 2000 .
[17] D. Polya,et al. Extensional failure and hydraulic valving at Minas da Panasqueira, Portugal: evidence from vein spatial distributions, displacements and geometries , 2000 .
[18] Seung-Jun Youm,et al. COMPOSITIONAL VARIATION OF ARSENOPYRITE AND FLUID EVOLUTION AT THE ULSAN DEPOSIT, SOUTHEASTERN KOREA: A LOW-SULFIDATION PORPHYRY SYSTEM , 2000 .
[19] R. Bakker. Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system , 1999 .
[20] D. Sanderson,et al. A Mohr circle construction for the opening of a pre-existing fracture , 1997 .
[21] Volker Lueders,et al. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .
[22] John H. Weare,et al. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties , 1996 .
[23] R. Bodnar,et al. Textural evolution of synthetic fluid inclusions in quartz during reequilibration, with applications to tectonic reconstruction , 1995 .
[24] C. Merlet. An accurate computer correction program for quantitative electron probe microanalysis , 1994 .
[25] Armanda Dória,et al. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal , 1992 .
[26] Y. Koh,et al. Application of arsenopyrite geothermometry and sphalerite geobarometry to the Taebaek Pb-Zn(-Ag) deposit at Yeonhwa I mine, Republic of Korea , 1992 .
[27] L. Diamond. Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapour + aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions ∗ , 1992 .
[28] D. Polya,et al. Textural evolution of W-Cu-Sn-bearing hydrothermal veins at Minas da Panasqueira, Portugal , 1991, Mineralogical Magazine.
[29] J. Angelier. Inversion directe et recherche 4-D : comparaison physique et mathématique de deux modes de détermination des tenseurs des paléocontraintes en tectonique de failles , 1991 .
[30] R. Powell,et al. Calculated mineral equilibria in the pelite system, KFMASH (K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O) , 1990 .
[31] D. Polya. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis , 1989 .
[32] J. Angelier. From orientation to magnitudes in paleostress determinations using fault slip data , 1989 .
[33] J. Sutter,et al. Thermochronology of economic mineral deposits; dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40 / 39 Ar age spectrum techniques on muscovite , 1988 .
[34] S. Parry,et al. Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal , 1987 .
[35] C. Derré,et al. Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by SnW aplite-pegmatite and quartz veins; southeastern border of the Serra de Estrela granitic massif (Beira Baixa, Portugal) , 1986 .
[36] Z. Sharp,et al. A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages , 1985 .
[37] F. Bergerat,et al. Estimation des paléo-contraintes liées à la formation de décrochements dans la plate-forme d'Europe du Nord , 1985 .
[38] S. Smeds,et al. Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides , 1984 .
[39] R. W. Bussink. Geochemistry of the Panasqueira tungsten-tin deposit, Portugal , 1984 .
[40] C. Gasparrini,et al. Composition of arsenopyrite from topaz greisen veins in southeastern Missouri , 1982 .
[41] W. Dollase,et al. Composition of plutonic muscovite; genetic implications , 1981 .
[42] S. Scott,et al. Sphalerite geobarometry in the Cu-Fe-Zn-S system , 1981 .
[43] L. Schermerhorn. Framework and evolution of Hercynian mineralization in the Iberian Meseta , 1981 .
[44] N. Boctor. Sphalerite geobarometry in Bodenmais ore, Bavaria , 1980 .
[45] T. K. Ekström,et al. Arsenopyrite and sphalerite as T-P indicators in sulfide ores from northern Sweden , 1980 .
[46] R. Bodnar,et al. Geologic Pressure Determinations from Fluid Inclusion Studies , 1980 .
[47] R. Rye,et al. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal , 1979 .
[48] S. Scott,et al. Phase relations involving arsenopyrite in the system Fe-As-S and their application , 1976 .
[49] S. Scott. Experimental Calibration of the Sphalerite Geobarometer , 1973 .
[50] H. Barnes,et al. Sphalerite geothermometry and geobarometry , 1971 .
[51] A. Clark. SULPHURIZATION OF CORDIERITE, MINAS DA PANASQUEIRA, PORTUGAL , 1969 .