Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications

There have been significant advances in the treatment of psychiatric disease in the last half century, but it is still unclear which neural circuits are ultimately responsible for specific disease states. Fortunately, technical limitations that have constrained this research have recently been mitigated by advances in research tools that facilitate circuit-based analyses. The most prominent of these tools is optogenetics, which refers to the use of genetically encoded, light-sensitive proteins that can be used to manipulate discrete neural circuits with temporal precision. Optogenetics has recently been used to examine the neural underpinnings of both psychiatric disease and symptom relief, and this research has rapidly identified novel therapeutic targets for what could be a new generation of rational drug development. As these and related methodologies for controlling neurons ultimately make their way into the clinic, circuit-based strategies for alleviating psychiatric symptoms could become a remarkably refined approach to disease treatment.

[1]  I. Yaroslavsky,et al.  Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. , 2002, Physics in medicine and biology.

[2]  Michael Davis,et al.  The role of the amygdala in fear and anxiety. , 1992, Annual review of neuroscience.

[3]  S. Sesack,et al.  Prefrontal cortical projections to the rat dorsal raphe nucleus: Ultrastructural features and associations with serotonin and γ‐aminobutyric acid neurons , 2004, The Journal of comparative neurology.

[4]  Joseph E LeDoux,et al.  Why We Think Plasticity Underlying Pavlovian Fear Conditioning Occurs in the Basolateral Amygdala , 1999, Neuron.

[5]  F. Kobeissy,et al.  An updated overview of animal models in neuropsychiatry , 2013, Neuroscience.

[6]  Takashi Maejima,et al.  Substitution of 5-HT1A Receptor Signaling by a Light-activated G Protein-coupled Receptor* , 2010, The Journal of Biological Chemistry.

[7]  R. Chambers,et al.  Regulation of affect by the lateral septum: implications for neuropsychiatry , 2004, Brain Research Reviews.

[8]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[9]  Jonathan P Britt,et al.  Presynaptic Opioid and Nicotinic Receptor Modulation of Dopamine Overflow in the Nucleus Accumbens , 2008, The Journal of Neuroscience.

[10]  E. V. Bockstaele,et al.  Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens , 1993, Brain Research.

[11]  Ross A McDevitt,et al.  Use of Channelrhodopsin for Activation of CNS Neurons , 2012, Current protocols in neuroscience.

[12]  James L Olds,et al.  Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. , 1954, Journal of comparative and physiological psychology.

[13]  S. Hyman Revitalizing Psychiatric Therapeutics , 2014, Neuropsychopharmacology.

[14]  Olga V. Demler,et al.  Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. , 2005, Archives of general psychiatry.

[15]  K. Deisseroth,et al.  Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior , 2013, Science.

[16]  J. Bogen,et al.  Quantitative analysis of cortical pyramidal neurons after corpus callosotomy , 2003, Annals of neurology.

[17]  P. Celada,et al.  Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABAA, and Glutamate Receptors , 2001, The Journal of Neuroscience.

[18]  Hongkui Zeng,et al.  Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus , 2013, Neuron.

[19]  S. Reeves,et al.  Bilateral Epidural Prefrontal Cortical Stimulation for Treatment-Resistant Depression , 2010, Biological Psychiatry.

[20]  Martin K. Schwarz,et al.  Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response , 2012, Neuron.

[21]  C. Fiorillo,et al.  Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement , 2012, PloS one.

[22]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[23]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[24]  Mary Kay Lobo,et al.  Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex , 2010, The Journal of Neuroscience.

[25]  G. Feng,et al.  Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors , 2013, Science.

[26]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[27]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[28]  R Radhakrishnan,et al.  Site of attachment of retinal in bacteriorhodopsin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[30]  James H. Marshel,et al.  Diverging neural pathways assemble a behavioural state from separable features in anxiety , 2013, Nature.

[31]  M. Marinelli,et al.  Dopamine Scales Performance in the Absence of New Learning , 2006, Neuron.

[32]  A. Bonci,et al.  Optogenetic interrogations of the neural circuits underlying addiction , 2013, Current Opinion in Neurobiology.

[33]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[34]  C. Akerman,et al.  Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission , 2012, Nature Neuroscience.

[35]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[36]  Brian R. Lee,et al.  Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine , 2012, Proceedings of the National Academy of Sciences.

[37]  M. Hajós,et al.  An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat , 1998, Neuroscience.

[38]  M. Kokaia,et al.  Global Optogenetic Activation of Inhibitory Interneurons during Epileptiform Activity , 2014, The Journal of Neuroscience.

[39]  K. Deisseroth,et al.  Optogenetic inhibition of cocaine seeking in rats , 2012, Addiction biology.

[40]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[41]  K. Tye,et al.  Amygdala Inputs to the Ventral Hippocampus Bidirectionally Modulate Social Behavior , 2014, The Journal of Neuroscience.

[42]  Fair M. Vassoler,et al.  Raphe GABAergic Neurons Mediate the Acquisition of Avoidance after Social Defeat , 2013, The Journal of Neuroscience.

[43]  David J. Anderson,et al.  Control of Stress-Induced Persistent Anxiety by an Extra-Amygdala Septohypothalamic Circuit , 2014, Cell.

[44]  Karl Deisseroth,et al.  A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward , 2013, Neuron.

[45]  Brian R. Lee,et al.  Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving , 2013, Nature Neuroscience.

[46]  J. Crawley,et al.  Criteria for validating mouse models of psychiatric diseases , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[47]  X. Zhuang,et al.  Adenylyl Cyclase Type 5 Contributes to Corticostriatal Plasticity and Striatum-Dependent Learning , 2009, The Journal of Neuroscience.

[48]  B. Roth,et al.  Remote Control of Neuronal Signaling , 2011, Pharmacological Reviews.

[49]  V. Arango,et al.  Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides , 2008, Molecular Psychiatry.

[50]  G. Stuber,et al.  Optogenetic Modulation of Neural Circuits that Underlie Reward Seeking , 2012, Biological Psychiatry.

[51]  S. Foote,et al.  Distribution of dopamine β‐hydroxylase‐like immunoreactive fibers within the shell subregion of the nucleus accumbens , 1997, Synapse.

[52]  Satoshi P. Tsunoda,et al.  Conversion of Channelrhodopsin into a Light-Gated Chloride Channel , 2014, Science.

[53]  S. Kapur,et al.  Half a century of antipsychotics and still a central role for dopamine D2 receptors , 2003, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[54]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[55]  Terrell Holloway,et al.  G protein-coupled receptor heterocomplexes in neuropsychiatric disorders. , 2013, Progress in molecular biology and translational science.

[56]  E. Peskind,et al.  A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. , 2013, The American journal of psychiatry.

[57]  K. Wiedemann,et al.  Biomarkers in development of psychotropic drugs , 2011, Dialogues in clinical neuroscience.

[58]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[59]  P. Willner Chronic Mild Stress (CMS) Revisited: Consistency and Behavioural-Neurobiological Concordance in the Effects of CMS , 2005, Neuropsychobiology.

[60]  Y. Humeau,et al.  Amygdala Inhibitory Circuits and the Control of Fear Memory , 2009, Neuron.

[61]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[62]  P. Skolnick Anxioselective anxiolytics: on a quest for the Holy Grail. , 2012, Trends in pharmacological sciences.

[63]  J. Neumaier,et al.  Serotonin 1B Autoreceptors Originating in the Caudal Dorsal Raphe Nucleus Reduce Expression of Fear and Depression-Like Behavior , 2011, Biological Psychiatry.

[64]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[65]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[66]  Michael X. Cohen,et al.  Nucleus Accumbens Deep Brain Stimulation Decreases Ratings of Depression and Anxiety in Treatment-Resistant Depression , 2010, Biological Psychiatry.

[67]  Garret D Stuber,et al.  Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits , 2011, Nature Protocols.

[68]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[69]  Kelly R. Tan,et al.  Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area , 2013, Science.

[70]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[71]  S. Dudek,et al.  Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice , 2007, Nature.

[72]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[73]  C. Gremel,et al.  Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use , 2013, Nature Neuroscience.

[74]  J. Fuster Prefrontal Cortex , 2018 .

[75]  K. Deisseroth,et al.  Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons , 2012, Nature.

[76]  I. Lucki,et al.  Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test , 2005, Neuroscience & Biobehavioral Reviews.

[77]  Marie Carlén,et al.  Optogenetic dissection of cortical information processing-shining light on schizophrenia , 2012, Brain Research.

[78]  David E. Moorman,et al.  Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats , 2013, Proceedings of the National Academy of Sciences.

[79]  Joseph E LeDoux,et al.  Molecular Mechanisms of Fear Learning and Memory , 2011, Cell.

[80]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[81]  S. Caccia,et al.  Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize α2‐adrenoceptors in the prefrontal cortex , 2001, British journal of pharmacology.

[82]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[83]  J. Girault,et al.  What is the Degree of Segregation between Striatonigral and Striatopallidal Projections? , 2010, Front. Neuroanat..

[84]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[85]  Aaron S. Andalman,et al.  Dopamine neurons modulate neural encoding and expression of depression-related behaviour , 2012, Nature.

[86]  John H. Krystal,et al.  Psychiatric Disorders: Diagnosis to Therapy , 2014, Cell.

[87]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[88]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[89]  T. Earnest,et al.  The site of attachment of retinal in bacteriorhodopsin. A resonance Raman study. , 1982, The Journal of biological chemistry.

[90]  René Hen,et al.  Dorsal vs Ventral Hippocampal Neurogenesis: Implications for Cognition and Mood , 2011, Neuropsychopharmacology.

[91]  A. Bonci,et al.  Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake , 2013, Nature Neuroscience.

[92]  G. Feng,et al.  Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond , 2014, Front. Behav. Neurosci..

[93]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[94]  A. Bonci,et al.  Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms , 2014, Biological Psychiatry.

[95]  Karl Deisseroth,et al.  Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel , 2014, Science.

[96]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[97]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[98]  P. Hegemann,et al.  Bimodal Activation of Different Neuron Classes with the Spectrally Red-Shifted Channelrhodopsin Chimera C1V1 in Caenorhabditis elegans , 2012, PloS one.

[99]  E. Nestler,et al.  Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of ΔFosB , 2014, The Journal of Neuroscience.

[100]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[101]  S. Lammel,et al.  Progress in understanding mood disorders: optogenetic dissection of neural circuits , 2014, Genes, brain, and behavior.

[102]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[103]  Mark A. Rossi,et al.  Operant Self-Stimulation of Dopamine Neurons in the Substantia Nigra , 2013, PloS one.

[104]  Alice M Stamatakis,et al.  Distinct extended amygdala circuits for divergent motivational states , 2013, Nature.

[105]  Karl Deisseroth,et al.  Color-tuned Channelrhodopsins for Multiwavelength Optogenetics , 2012, The Journal of Biological Chemistry.

[106]  G. Feng,et al.  Cortical Control of Affective Networks , 2013, The Journal of Neuroscience.

[107]  Michael X. Cohen,et al.  Deep Brain Stimulation to Reward Circuitry Alleviates Anhedonia in Refractory Major Depression , 2008, Neuropsychopharmacology.

[108]  S. Maier,et al.  Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus , 2005, Nature Neuroscience.

[109]  J. Rubenstein Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder , 2010, Current opinion in neurology.

[110]  G. Stuber,et al.  Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate , 2010, The Journal of Neuroscience.

[111]  G. Miller Is pharma running out of brainy ideas? , 2010, Science.

[112]  K. Tye,et al.  BLA to vHPC Inputs Modulate Anxiety-Related Behaviors , 2013, Neuron.

[113]  E. Bamberg,et al.  Light-driven proton or chloride pumping by halorhodopsin. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[114]  F. Woodward Hopf,et al.  Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking , 2013, Nature.

[115]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[117]  C. Lüscher,et al.  Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour , 2011, Nature.

[118]  E. Nestler,et al.  The brain reward circuitry in mood disorders , 2013, Nature Reviews Neuroscience.

[119]  R. Wise,et al.  Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens , 2012, Neuron.

[120]  Collin Challis,et al.  Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat , 2014, Front. Behav. Neurosci..

[121]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[122]  N. Kline,et al.  A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. , 1957, Psychiatric research reports.

[123]  Hyung Ho Yoon,et al.  Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. , 2014, Neurosurgery.

[124]  Karl Deisseroth,et al.  Optical activation of lateral amygdala pyramidal cells instructs associative fear learning , 2010, Proceedings of the National Academy of Sciences.

[125]  R. Porsolt,et al.  Depression: a new animal model sensitive to antidepressant treatments , 1977, Nature.

[126]  R. Costa,et al.  Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions , 2013, Nature Communications.

[127]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[128]  Nikolai Axmacher,et al.  Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: Effects of 12-month stimulation , 2011, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry.