Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method.

The past decade has seen the explosion of experimental results on nanowires grown by catalyzed mechanisms. However, few are known on their electronic properties especially the influence of surfaces and catalysts. We demonstrate by an optical method how a curious electron-hole thermodynamic phase can help to characterize volume and surface recombination rates of silicon nanowires (SiNWs). By studying the electron-hole liquid dynamics as a function of the spatial confinement, we directly measured these two key parameters. We measured a surface recombination velocity of passivated SiNWs of 20 cm s(-1), 100 times lower than previous values reported. Furthermore, the volume recombination rate of gold-catalyzed SiNWs is found to be similar to that of a high-quality three-dimensional silicon crystal; the influence of the catalyst is negligible. These results advance the knowledge of SiNW surface passivation and provide essential guidance to the development of efficient nanowire-based devices.