Symmetries and conserved quantities for fractional action-like Pfaffian variational problems

[1]  A. R. El-Nabulsi,et al.  Non-Linear Dynamics with Non-Standard Lagrangians , 2013 .

[2]  R. El-Nabulsi Calculus of variations with hyperdifferential operators from Tabasaki–Takebe–Toda lattice arguments , 2013 .

[3]  Shao-Kai Luo,et al.  A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems , 2012 .

[4]  Dumitru Baleanu,et al.  Fractional Euler–Lagrange equations revisited , 2012 .

[5]  Dumitru Baleanu,et al.  Generalized variational calculus in terms of multi-parameters fractional derivatives , 2011 .

[6]  吴惠彬,et al.  Type of integral and reduction for a generalized Birkhoffian system , 2011 .

[7]  Rami Ahmad El-Nabulsi,et al.  Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator , 2011 .

[8]  D. Baleanu,et al.  Hamilton–Jacobi and fractional like action with time scaling , 2011 .

[9]  Zhang Yi,et al.  Poisson theory and integration method of Birkhoffian systems in the event space , 2010 .

[10]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[11]  Dumitru Baleanu,et al.  Fractional variational optimal control problems with delayed arguments , 2010 .

[12]  D. Baleanu,et al.  Newtonian law with memory , 2010 .

[13]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[14]  Ahmad Rami EL-Nabulsi,et al.  Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems , 2009 .

[15]  Teodor M. Atanackovic,et al.  Variational problems with fractional derivatives: Invariance conditions and N\ , 2009, 1101.2962.

[16]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[17]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[18]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[19]  Delfim F. M. Torres,et al.  Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem , 2007, 0712.1844.

[20]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[21]  Delfim F. M. Torres,et al.  Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times , 2007, 0711.0645.

[22]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[23]  Dumitru Baleanu,et al.  On exact solutions of a class of fractional Euler–Lagrange equations , 2007, 0708.1433.

[24]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[25]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007, Journal of Mathematical Analysis and Applications.

[26]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[27]  Delfim F. M. Torres,et al.  Constants of motion for fractional action-like variational problems , 2006, math/0607472.

[28]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[29]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[30]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[31]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[32]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[33]  D. Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004, math-ph/0405012.

[34]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[35]  F.-X. Mei,et al.  On the Birkhoffian mechanics , 2001 .

[36]  Yongxin Guo,et al.  Birkhoffian formulations of nonholonomic constrained systems , 2001 .

[37]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[38]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[39]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  T. B. Putsyata,et al.  Analytical dynamics , 1973 .

[41]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[42]  Wenan Jiang,et al.  Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems , 2012 .

[43]  Rami Ahmad El-Nabulsi,et al.  Fractional variational problems from extended exponentially fractional integral , 2011, Appl. Math. Comput..

[44]  Rami Ahmad El-Nabulsi,et al.  A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators , 2011, Appl. Math. Lett..

[45]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[46]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[47]  R. Nabulsi,et al.  A FRACTIONAL APPROACH TO NON-CONSERVATIVE LAGRANGIAN DYNAMICAL SYSTEMS , 2005 .

[48]  Zhang Yi,et al.  Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system , 2004 .

[49]  Z. Gai First Integrals and Reduction of the Birkhoffian System , 2001 .