Implicit Reconstruction of Vasculatures Using Bivariate Piecewise Algebraic Splines

Vasculature geometry reconstruction from volumetric medical data is a crucial task in the development of computer guided minimally invasive vascular surgery systems. In this paper, a technique for reconstructing the geometry of vasculatures using bivariate implicit splines is developed. With the proposed technique, an implicit geometry representation of the vascular tree can be accurately constructed based on the voxels extracted directly from the surface of a certain vascular structure in a given volumetric medical dataset. Experimental results show that the geometric representation built using our method can faithfully represent the morphology and topology of vascular structures. In addition, both the qualitative and the quantitative validations have been performed to show that the reconstructed vessel geometry is of high accuracy and smoothness. An virtual angioscopy system has been implemented to indicate one of the strengths of our proposed method.

[1]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[2]  Dirk Bartz,et al.  Virtual Endoscopy in Research and Clinical Practice , 2005, Comput. Graph. Forum.

[3]  Bernhard Preim,et al.  Visualization and interaction techniques for the exploration of vascular structures , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[5]  Bernhard Preim,et al.  3D Visualization of Vasculature: An Overview , 2008, Visualization in Medicine and Life Sciences.

[6]  Andreas Pommert,et al.  A Realistic Model of the Inner Organs from the Visible Human Data , 2000, MICCAI.

[7]  Tamy Boubekeur,et al.  Volume‐Surface Trees , 2006, Comput. Graph. Forum.

[8]  Xiaoning Qian,et al.  Effective visualization of complex vascular structures using a non-parametric vessel detection method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Bernhard Preim,et al.  Model-free Surface Visualization of Vascular Trees , 2007, EuroVis.

[10]  Cindy Grimm Implicit Generalized Cylinders using Profile Curves , 2003 .

[11]  Alexander Bornik,et al.  Reconstruction and Representation of Tubular Structures using Simplex Meshes , 2005, WSCG.

[12]  Chenshi Dong,et al.  Curvatures estimation on triangular mesh , 2005 .

[13]  Q. Li Smooth Piecewise Polynomial Blending Operations for Implicit Shapes , 2007, Comput. Graph. Forum.

[14]  Francis K. H. Quek,et al.  A review of vessel extraction techniques and algorithms , 2004, CSUR.

[15]  Brian Wyvill,et al.  Interactive techniques for implicit modeling , 1990, I3D '90.

[16]  Dirk Bartz,et al.  Interactive exploration of extra- and interacranial blood vessels , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[17]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[18]  Enrico Gobbetti,et al.  Interactive virtual angioscopy , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[19]  Jie Tian,et al.  2D piecewise algebraic splines for implicit modeling , 2009, TOGS.

[20]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .

[21]  Sergei Azernikov Sweeping solids on manifolds , 2008, SPM '08.

[22]  Christophe Schlick,et al.  Implicit Sweep Objects , 1996, Comput. Graph. Forum.

[23]  Jie Tian,et al.  Partial shape-preserving splines , 2011, Comput. Aided Des..

[24]  Jules Bloomenthal,et al.  Convolution surfaces , 1991, SIGGRAPH.

[25]  Bernhard Preim,et al.  Visualization of vasculature with convolution surfaces: method, validation and evaluation , 2005, IEEE Transactions on Medical Imaging.

[26]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[27]  Stephane Cotin,et al.  Segmentation and reconstruction of vascular structures for 3D real-time simulation , 2011, Medical Image Anal..

[28]  Bernhard Preim,et al.  Comparison of Fundamental Mesh Smoothing Algorithms for Medical Surface Models , 2006, SimVis.

[29]  Gershon Elber,et al.  Trimming local and global self-intersections in offset curves/surfaces using distance maps , 2006, Comput. Aided Des..

[30]  Ken Masamune,et al.  Region-Growing Based Feature Extraction Algorithm for Tree-Like Objects , 1996, VBC.

[31]  John G. Griffiths,et al.  Constructive implicit fitting , 2006, Comput. Aided Geom. Des..

[32]  Katja Bühler,et al.  Surface models of tube trees , 2004, Proceedings Computer Graphics International, 2004..

[33]  Jules Bloomenthal,et al.  Skeletal design of natural forms , 1996 .

[34]  Gerald J. Agin Representation and description of curved objects , 1972 .

[35]  Brian Wyvill,et al.  Two‐dimensional Potential Fields for Advanced Implicit Modeling Operators , 2003, Comput. Graph. Forum.

[36]  Brian Wyvill,et al.  Generalized sweep templates for implicit modeling , 2005, GRAPHITE.

[37]  Bernhard Preim,et al.  Implicit vessel surface reconstruction for visualization and CFD simulation , 2008, International Journal of Computer Assisted Radiology and Surgery.

[38]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[39]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[40]  Dirk Bartz,et al.  Virtual voyage: interactive navigation in the human colon , 1997, SIGGRAPH.

[41]  Sarah Gibson Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998 .

[42]  Gabriella Sanniti di Baja,et al.  Euclidean skeleton via centre-of-maximal-disc extraction , 1993, Image Vis. Comput..