Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[3]  F. Golla The Central Nervous System , 1960, Nature.

[4]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[5]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[6]  S. W. Kuffler,et al.  Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. , 1966, Journal of neurophysiology.

[7]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[8]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[9]  P. Blackmore,et al.  Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. , 1985, The Biochemical journal.

[10]  P. Cobbold,et al.  Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. , 1987, Cell calcium.

[11]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[12]  G. Guillon,et al.  Positive feedback regulation of phospholipase C by vasopressin-induced calcium mobilization in WRK1 cells. , 1990, Cellular signalling.

[13]  C. Neylon,et al.  Synchronized repetitive spikes in cytoplasmic calcium in confluent monolayers of human umbilical vein endothelial cells , 1990, FEBS letters.

[14]  K. McCarthy,et al.  Norepinephrine‐evoked calcium transients in cultured cerebral type 1 astroglia , 1990, Glia.

[15]  S. Finkbeiner,et al.  Ca2+ waves in astrocytes. , 1991, Cell calcium.

[16]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[17]  P C Sternweis,et al.  Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. , 1991, Science.

[18]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[19]  A. Charles,et al.  Intercellular signaling in glial cells: Calcium waves and oscillations in response to mechanical stimulation and glutamate , 1991, Neuron.

[20]  M. Sanderson,et al.  Intercellular calcium signaling via gap junctions in glioma cells , 1992, The Journal of cell biology.

[21]  S. Finkbeiner Calcium waves in astrocytes-filling in the gaps , 1992, Neuron.

[22]  K. McCarthy,et al.  Activation of Protein Kinase C Blocks Astroglial Gap Junction Communication and Inhibits the Spread of Calcium Waves , 1992, Journal of neurochemistry.

[23]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. McCarthy,et al.  Stimulation of the P2Y Purinergic Receptor on Type 1 Astroglia Results in Inositol Phosphate Formation and Calcium Mobilization , 1992, Journal of neurochemistry.

[25]  Stephen J. Smith,et al.  Neuronal activity triggers calcium waves in hippocampal astrocyte networks , 1992, Neuron.

[26]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[27]  M. Berridge,et al.  All‐or‐nothing Ca2+ mobilization from the intracellular stores of single histamine‐stimulated HeLa cells. , 1992, The Journal of physiology.

[28]  D. Leibowitz The glial spike theory. I. On an active role of neuroglia in spreading depression and migraine , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  J. Putney,et al.  Excitement about calcium signaling in inexcitable cells. , 1993, Science.

[30]  A. Atri,et al.  A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.

[31]  M J Sanderson,et al.  Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin , 1993, Glia.

[32]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[33]  J. Sneyd,et al.  A model for the propagation of intercellular calcium waves. , 1994, The American journal of physiology.

[34]  P. Yarowsky,et al.  Sodium/calcium exchange in rat cortical astrocytes , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  C. Frank Starmer,et al.  Vulnerability in one-dimensional excitable media , 1994 .

[36]  Vicente Pérez-Muñuzuri,et al.  A method for spiral wave generation in the Belousov-Zhabotinsky reaction , 1994 .

[37]  J. Rinzel,et al.  Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. , 1994, Journal of theoretical biology.

[38]  A. Charles,et al.  Glia-neuron intercellular calcium signaling. , 1994, Developmental neuroscience.

[39]  J. Russell,et al.  Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. , 1994, Journal of neurobiology.

[40]  A. Cornell-Bell,et al.  Glutamate‐induced calcium signaling in astrocytes , 1994, Glia.

[41]  M. Nedergaard,et al.  Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. , 1994, Science.

[42]  Michael J. Sanderson,et al.  Mechanisms and function of intercellular calcium signaling , 1994, Molecular and Cellular Endocrinology.

[43]  B. Wetton,et al.  Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. , 1995, The American journal of physiology.

[44]  K. McCarthy,et al.  Receptor-mediated calcium signals in astroglia: multiple receptors, common stores and all-or-nothing responses. , 1995, Cell calcium.

[45]  B. Soliven,et al.  Calcium signaling in cultured rat oligodendrocytes , 1995, Glia.

[46]  A. Cornell-Bell,et al.  Human epileptic astrocytes exhibit increased gap junction coupling , 1995, Glia.

[47]  H. Othmer,et al.  Frequency encoding in excitable systems with applications to calcium oscillations. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Thompson,et al.  The lifetime of inositol 1,4,5-trisphosphate in single cells , 1995, The Journal of general physiology.

[49]  S. B. Kater,et al.  Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. , 1995, Journal of neurobiology.

[50]  J. Glowinski,et al.  Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes , 1995, Nature.

[51]  L. Beaugé,et al.  The Na+‐Ca2+ exchange system in rat glial cells in culture: Activation by external monovalent cations , 1995, Glia.

[52]  S. B. Kater,et al.  An extracellular signaling component in propagation of astrocytic calcium waves. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Laurent Venance,et al.  Mechanism Involved in Initiation and Propagation of Receptor-Induced Intercellular Calcium Signaling in Cultured Rat Astrocytes , 1997, The Journal of Neuroscience.

[54]  K. Zahs,et al.  Calcium Waves in Retinal Glial Cells , 1997, Science.

[55]  T. Dunwiddie,et al.  Adenine Nucleotides Undergo Rapid, Quantitative Conversion to Adenosine in the Extracellular Space in Rat Hippocampus , 1997, The Journal of Neuroscience.

[56]  A. Charles,et al.  Spiral intercellular calcium waves in hippocampal slice cultures. , 1998, Journal of neurophysiology.

[57]  A. Charles,et al.  Intercellular calcium waves in glia , 1998, Glia.

[58]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[59]  F Moss,et al.  Noise-induced spiral waves in astrocyte syncytia show evidence of self-organized criticality. , 1998, Journal of neurophysiology.

[60]  C. Naus,et al.  Connexins regulate calcium signaling by controlling ATP release. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  L Leybaert,et al.  Inositol‐trisphosphate‐dependent intercellular calcium signaling in and between astrocytes and endothelial cells , 1998, Glia.

[62]  R. Cunha,et al.  Inhibition by ATP of Hippocampal Synaptic Transmission Requires Localized Extracellular Catabolism by Ecto-Nucleotidases into Adenosine and Channeling to Adenosine A1 Receptors , 1998, The Journal of Neuroscience.

[63]  Peter Lipp,et al.  Calcium - a life and death signal , 1998, Nature.

[64]  J. Sneyd,et al.  Intercellular spiral waves of calcium. , 1998, Journal of theoretical biology.

[65]  S. B. Kater,et al.  ATP Released from Astrocytes Mediates Glial Calcium Waves , 1999, The Journal of Neuroscience.

[66]  P. Haydon,et al.  Imaging Extracellular Waves of Glutamate during Calcium Signaling in Cultured Astrocytes , 2000, The Journal of Neuroscience.

[67]  Z Wang,et al.  Direct observation of calcium-independent intercellular ATP signaling in astrocytes. , 2000, Analytical chemistry.

[68]  K. Nicolay,et al.  In vivo 31P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle , 2000 .

[69]  K. Nicolay,et al.  In vivo (31)P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. , 2000, Biophysical journal.

[70]  R. Swanson,et al.  Astrocyte glutamate transport: Review of properties, regulation, and physiological functions , 2000, Glia.

[71]  H. Parri,et al.  Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation , 2001, Nature Neuroscience.

[72]  R Heinrich,et al.  Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. , 2001, Biophysical journal.

[73]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[74]  E. Newman,et al.  Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Müller Cells , 2001, The Journal of Neuroscience.

[75]  Ernesto Carafoli,et al.  Calcium signaling: A tale for all seasons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  L. Venance,et al.  Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach , 2002, The Journal of Neuroscience.

[77]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[78]  S. Oloff,et al.  Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. , 2002, Journal of neurophysiology.

[79]  Martin D. Bootman,et al.  Calcium-induced calcium release , 2003, Current Biology.

[80]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[81]  R. D’Ambrosio The role of glial membrane ion channels in seizures and epileptogenesis. , 2004, Pharmacology & therapeutics.

[82]  J. Russell,et al.  Subcellular calcium oscillators and calcium influx support agonist-induced calcium waves in cultured astrocytes , 1995, Molecular and Cellular Biochemistry.