On the scaling limit of planar self-avoiding walk
暂无分享,去创建一个
[1] T. B. Grimley. The Configuration of Real Polymer Chains , 1951 .
[2] Harry Kesten,et al. On the Number of Self‐Avoiding Walks , 1963 .
[3] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[4] Saleur,et al. Exact surface and wedge exponents for polymers in two dimensions. , 1986, Physical review letters.
[5] B. Duplantier. Fractals in two dimensions and conformal invariance , 1989 .
[6] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[7] R. Bass. Probabilistic Techniques in Analysis , 1994 .
[8] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[9] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[10] G. Lawler,et al. Intersection Exponents for Planar Brownian Motion , 1999 .
[11] TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.
[12] Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.
[13] G. Lawler,et al. Universality for conformally invariant intersection exponents , 2000 .
[14] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.
[15] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[16] Oded Schramm,et al. Basic properties of SLE , 2001 .
[17] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[18] T. Kennedy. Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.
[19] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .