On the scaling limit of planar self-avoiding walk

A planar self-avoiding walk (SAW) is a nearest neighbor random walk path in the square lattice with no self-intersection. A planar self-avoiding polygon (SAP) is a loop with no self-intersection. In this paper we present conjectures for the scaling limit of the uniform measures on these objects. The conjectures are based on recent results on the stochastic Loewner evolution and non-disconnecting Brownian motions. New heuristic derivations are given for the critical exponents for SAWs and SAPs.

[1]  T. B. Grimley The Configuration of Real Polymer Chains , 1951 .

[2]  Harry Kesten,et al.  On the Number of Self‐Avoiding Walks , 1963 .

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  Saleur,et al.  Exact surface and wedge exponents for polymers in two dimensions. , 1986, Physical review letters.

[5]  B. Duplantier Fractals in two dimensions and conformal invariance , 1989 .

[6]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[7]  R. Bass Probabilistic Techniques in Analysis , 1994 .

[8]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[9]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[10]  G. Lawler,et al.  Intersection Exponents for Planar Brownian Motion , 1999 .

[11]  TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.

[12]  Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.

[13]  G. Lawler,et al.  Universality for conformally invariant intersection exponents , 2000 .

[14]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[15]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[16]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[17]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[18]  T. Kennedy Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.

[19]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .