Classical State Masking over a Quantum Channel

Transmission of classical information over a quantum state-dependent channel is considered, when the encoder can measure channel side information (CSI) and is required to mask information on the quantum channel state from the decoder. In this quantum setting, it is essential to conceal the CSI measurement as well. A regularized formula is derived for the masking equivocation region, and a full characterization is established for a class of measurement channels. Index Terms Quantum information, Shannon theory, quantum communication, channel capacity, state masking, state information.

[1]  Mark M. Wilde,et al.  Entanglement-assisted private communication over quantum broadcast channels , 2018, Journal of Physics A: Mathematical and Theoretical.

[2]  Shlomo Shamai,et al.  Information Rates Subject to State Masking , 2007, IEEE Transactions on Information Theory.

[3]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[4]  Moni Naor,et al.  Efficient oblivious transfer protocols , 2001, SODA '01.

[5]  Matthieu R. Bloch,et al.  State Leakage and Coordination With Causal State Knowledge at the Encoder , 2021, IEEE Transactions on Information Theory.

[6]  Mark M. Wilde,et al.  Public and private resource trade-offs for a quantum channel , 2010, Quantum Inf. Process..

[7]  Uzi Pereg Communication over Quantum Channels with Parameter Estimation , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[8]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[9]  Mark M. Wilde Comment on ''Secret-key-assisted private classical communication capacity over quantum channels'' , 2011 .

[10]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[11]  Christoph Hirche,et al.  Convexity and Operational Interpretation of the Quantum Information Bottleneck Function , 2018, 2019 IEEE International Symposium on Information Theory (ISIT).

[12]  Min-Hsiu Hsieh,et al.  Publicness, Privacy and Confidentiality in the Single-Serving Quantum Broadcast Channel , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[13]  Masahito Hayashi,et al.  Secure Communication Over Fully Quantum Gel' Fand-Pinsker Wiretap Channel , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[14]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[15]  Moni Naor,et al.  Bit commitment using pseudorandomness , 1989, Journal of Cryptology.

[16]  Holger Boche,et al.  Secret message transmission over quantum channels under adversarial quantum noise: Secrecy capacity and super-activation , 2017, Journal of Mathematical Physics.

[17]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[18]  Seth Lloyd,et al.  Quantum Data Hiding in the Presence of Noise , 2015, IEEE Transactions on Information Theory.

[19]  Shlomo Shamai,et al.  Broadcasting Information subject to State Masking over a MIMO State Dependent Gaussian Channel , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[20]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[21]  Seth Lloyd,et al.  Quantum enigma machines and the locking capacity of a quantum channel , 2013, ArXiv.

[22]  A. Winter,et al.  Private capacity of quantum channels is not additive. , 2009, Physical review letters.

[23]  Vuk Marojevic,et al.  Security and Protocol Exploit Analysis of the 5G Specifications , 2018, IEEE Access.

[24]  Zahra Baghali Khanian,et al.  Entanglement-Assisted Quantum Data Compression , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[25]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[26]  Thomas Faulkner,et al.  Quantum corrections to holographic mutual information , 2015, 1511.07462.

[27]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[28]  Shun Watanabe,et al.  Channel Simulation and Coded Source Compression , 2015, IEEE Transactions on Information Theory.

[29]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[30]  Andreas Winter,et al.  Distributed Compression of Correlated Classical-Quantum Sources or: The Price of Ignorance , 2018, IEEE Transactions on Information Theory.

[31]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[32]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[33]  Sriram Vishwanath,et al.  State Amplification Subject to Masking Constraints , 2016, IEEE Transactions on Information Theory.

[34]  Publicness , 2017 .

[35]  Min-Hsiu Hsieh,et al.  Secret-key-assisted private classical communication capacity over quantum channels , 2008 .

[36]  Mourad Debbabi,et al.  Communication security for smart grid distribution networks , 2013, IEEE Communications Magazine.

[37]  Hua Lu,et al.  Location Privacy Techniques in Client-Server Architectures , 2009, Privacy in Location-Based Applications.

[38]  Konstantinos Markantonakis,et al.  A Certificateless Group Authenticated Key Agreement Protocol for Secure Communication in Untrusted UAV Networks , 2018, 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC).

[39]  Bahareh Akhbari,et al.  Classical-Quantum Multiple Access Wiretap Channel , 2019, 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC).

[40]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[41]  Soon Xin Ng,et al.  Guest Editorial Advances in Quantum Communications, Computing, Cryptography, and Sensing , 2020, IEEE J. Sel. Areas Commun..

[42]  S. Imre,et al.  Quantum Communication Networks , 2013 .

[43]  Sennur Ulukus,et al.  State amplification and state masking for the binary energy harvesting channel , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[44]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[45]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[46]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[47]  Thomas A. Courtade Information masking and amplification: The source coding setting , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[48]  R. Myers,et al.  Mutual information and the F-theorem , 2015, 1506.06195.

[49]  Rahul Jain,et al.  On the near-optimality of one-shot classical communication over quantum channels , 2018, Journal of Mathematical Physics.

[50]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..

[51]  Jiliang Jing,et al.  Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames , 2008, 0802.1238.

[52]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[54]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[55]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[56]  G. Fettweis,et al.  6G: The Personal Tactile Internet—And Open Questions for Information Theory , 2021, IEEE BITS the Information Theory Magazine.

[57]  Holger Boche,et al.  Classical-quantum arbitrarily varying wiretap channel: common randomness assisted code and continuity , 2016, Quantum Information Processing.

[58]  Uzi Pereg Entanglement-Assisted Capacity of Quantum Channels with Side Information , 2019, ArXiv.

[59]  P. Mateus,et al.  ROTed: Random Oblivious Transfer for embedded devices , 2021, IACR Cryptol. ePrint Arch..

[60]  Holger Boche,et al.  The classical-quantum channel with random state parameters known to the sender , 2015, ArXiv.

[61]  H. Vincent Poor,et al.  Secure Short-Packet Communications for Mission-Critical IoT Applications , 2019, IEEE Transactions on Wireless Communications.

[62]  Feng Bao,et al.  Evolving privacy: From sensors to the Internet of Things , 2017, Future Gener. Comput. Syst..

[63]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[64]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[65]  Igor Devetak,et al.  Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.

[66]  Mark M. Wilde,et al.  Conditional quantum one-time pad , 2017, Physical review letters.

[67]  B. Swingle,et al.  Mutual information and the structure of entanglement in quantum field theory , 2010, 1010.4038.

[68]  Shun Watanabe,et al.  Private and quantum capacities of more capable and less noisy quantum channels , 2011, 1110.5746.

[69]  Fady Alajaji,et al.  Information Extraction Under Privacy Constraints , 2015, Inf..

[70]  Sriram Vishwanath,et al.  State amplification under masking constraints , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[71]  Nilanjana Datta,et al.  Duality between source coding with quantum side information and c-q channel coding , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[72]  Matthieu R. Bloch,et al.  Empirical coordination, state masking and state amplification: Core of the decoder's knowledge , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[73]  David Elkouss,et al.  Superadditivity of private information for any number of uses of the channel , 2015, Physical review letters.

[74]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[75]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[76]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[77]  Justin P. Coon,et al.  Coding for Classical-Quantum Channels With Rate Limited Side Information at the Encoder: Information-Spectrum Approach , 2017, IEEE Transactions on Information Theory.

[78]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[79]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[80]  Frédéric Dupuis The capacity of quantum channels with side information at the transmitter , 2009, 2009 IEEE International Symposium on Information Theory.

[81]  H. Boche,et al.  Universal superposition codes: capacity regions of compound quantum broadcast channel with confidential messages , 2019, 2020 IEEE International Symposium on Information Theory (ISIT).

[82]  Holger Boche,et al.  Quantum Channel State Masking , 2020, IEEE Transactions on Information Theory.

[83]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.