Effects of pH on the light-induced photoelectrochemical performances of NiO/ZrO2 nanoparticles

[1]  Sutripto Majumder,et al.  Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting , 2021, Applied Surface Science.

[2]  K. De Wael,et al.  Singlet oxygen-based photoelectrochemical detection of DNA. , 2021, Biosensors & bioelectronics.

[3]  Xiaolong Liu,et al.  CRISPR/Cas12a-mediated liposome-amplified strategy for the photoelectrochemical detection of nucleic acid. , 2021, Chemical communications.

[4]  H. Nishikawa,et al.  Fabrication of NiO/ZrO2 nanocomposites using ball milling-pyrolysis method , 2021 .

[5]  De‐Yin Wu,et al.  Plasmonic photoelectrochemical dimerization and reduction of p-halo-nitrobenzene on AgNPs@Ag electrode , 2021 .

[6]  Li Xu,et al.  A photoelectrochemical aptasensor of ciprofloxacin based on Bi24O31Cl10/BiOCl heterojunction , 2021, Microchimica Acta.

[7]  Xiaotian Li,et al.  Perovskite-SrTiO3/TiO2/PDA as photoelectrochemical glucose biosensor , 2021 .

[8]  D. Xiao,et al.  Donor-Acceptor Compensated ZnO Semiconductor for Photoelectrochemical Biosensors. , 2021, ACS applied materials & interfaces.

[9]  Wei‐Wei Zhao,et al.  Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination , 2021, Microchimica Acta.

[10]  N. Nombona,et al.  Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting , 2021 .

[11]  Dunwei Wang,et al.  Evolution of Surface Oxidation on Ta3N5 as Probed by a Photoelectrochemical Method. , 2021, ACS applied materials & interfaces.

[12]  Chunjoong Kim,et al.  Nanostructured β-Bi2O3/PbS heterojunction as np-junction photoanode for enhanced photoelectrochemical performance , 2021, Journal of Alloys and Compounds.

[13]  S. Caramori,et al.  Photoelectrochemical hydrogen evolution using CdTexS1-x quantum dots as sensitizers on NiO photocathodes. , 2020, Dalton transactions.

[14]  J. Shim,et al.  Ni-dopant concentration effect of ZrO2 photocatalyst on photoelectrochemical water splitting and efficient removal of toxic organic pollutants , 2020 .

[15]  Minghui Yang,et al.  Enhanced, stable, humidity-tolerant xylene sensing using ordered macroporous NiO/ZrO2 nanocomposites , 2020 .

[16]  Sajjad Ullah,et al.  Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants , 2020 .

[17]  M. Behpour,et al.  CIS/CdS/ZnO/ZnO:Al modified photocathode for enhanced photoelectrochemical behavior under visible irradiation: Effects of pH and concentration of electrolyte solution , 2020 .

[18]  B. Yan,et al.  A 2D-2D heterojunction Bi2WO6/WS2-x as a broad-spectrum bactericide: Sulfur vacancies mediate the interface interactions between biology and nanomaterials. , 2020, Biomaterials.

[19]  M. Roeffaers,et al.  Subsurface Defect Engineering in Single-Unit-Cell Bi2WO6 Monolayers Boosts Solar-Driven Photocatalytic Performance , 2020 .

[20]  Wu Lei,et al.  Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants. , 2020, Chemosphere.

[21]  Hongbing Ji,et al.  Hybridization of CuO with Bi2MoO6 nanosheets as a surface multifunctional photocatalyst for toluene oxidation under solar irradiation. , 2019, ACS applied materials & interfaces.

[22]  S. Maddila,et al.  Four-Component Fusion Protocol with NiO/ZrO2 as a Robust Recyclable Catalyst for Novel 1,4-Dihydropyridines , 2019, ACS omega.

[23]  J. Qian,et al.  A self-powered photoelectrochemical aptamer probe for oxytetracycline based on the use of a NiO nanocrystal/g-C3N4 heterojunction , 2019, Microchimica Acta.

[24]  Ran Tao,et al.  Sandwich-type cobalt-polyoxometalate as an effective hole extraction layer for enhancing BiVO4-based photoelectrochemical oxidation , 2019, Journal of Alloys and Compounds.

[25]  John Wang,et al.  Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance , 2019, Applied Catalysis B: Environmental.

[26]  G. Zeng,et al.  Modulation of Bi2 MoO6 -Based Materials for Photocatalytic Water Splitting and Environmental Application: a Critical Review. , 2019, Small.

[27]  H. Bemana,et al.  Incorporation of NiO electrocatalyst with α-Fe2O3 photocatalyst for enhanced and stable photoelectrochemical water splitting , 2019, Surfaces and Interfaces.

[28]  Liangmin Yu,et al.  A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 °C , 2018, Journal of Power Sources.

[29]  Zhifeng Liu,et al.  Flake-like NiO/WO 3 p-n heterojunction photocathode for photoelectrochemical water splitting , 2018 .

[30]  M. Zanoni,et al.  Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion , 2018 .

[31]  K. Leung,et al.  A Delaminated Defect‐Rich ZrO2 Hierarchical Nanowire Photocathode for Efficient Photoelectrochemical Hydrogen Evolution , 2018 .

[32]  Ang Li,et al.  Surviving High-Temperature Calcination: ZrO2 -Induced Hematite Nanotubes for Photoelectrochemical Water Oxidation. , 2017, Angewandte Chemie.

[33]  J. Bisquert,et al.  Cooperative Catalytic Effect of ZrO2 and α-Fe2 O3 Nanoparticles on BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting. , 2016, ChemSusChem.

[34]  S. Behrouz,et al.  Synthesis and characterization of ZrO2 and carbon-doped ZrO2 nanoparticles for photocatalytic application , 2016 .

[35]  F. Wang,et al.  Effects of pH on the visible-light induced photocatalytic and photoelectrochemical performances of hierarchical Bi2WO6 microspheres , 2014 .

[36]  J. Jang,et al.  A systematic study of post-activation temperature dependence on photoelectrochemical water splitting of one-step synthesized FeOOH CF photoanodes with erratically loaded ZrO2 , 2021 .