Symmetry and separation of variables for the Helmholtz and Laplace equations

This paper is one of a series relating the symmetry groups of the principal linear partial differential equations of mathematical physics and the coordinate systems in which variables separate for these equations. In particular, we mention [1] and paper [2] which is a survey of and introduction to the series. Here we apply group-theoretic methods to study the separable coordinate systems for the Helmholtz equation.

[1]  W. Miller,et al.  Lie theory and separation of variables. 10. Nonorthogonal R‐separable solutions of the wave equation ∂ttψ=Δ2ψ , 1976 .

[2]  W. Miller,et al.  Lie theory and separation of variables. 9. Orthogonal R‐separable coordinate systems for the wave equation ψtt−Δ2ψ=0 , 1976 .

[3]  W. Miller,et al.  Lie theory and separation of variables. 11. The EPD equation , 1976 .

[4]  W. Miller,et al.  Lie theory and separation of variables. 8. Semisubgroup coordinates for ψtt-Δ2ψ=0 , 1975 .

[5]  W. Miller,et al.  Lie theory and separation of variables. 6. The equation iUt + Δ2U = 0 , 1975 .

[6]  J. Miller Lie Theory and Separation of Variables. II: Parabolic Coordinates , 1974 .

[7]  W. Miller,et al.  Lie theory and separation of variables. 4. The groups SO (2,1) and SO (3) , 1974 .

[8]  J. Miller Lie Theory and Separation of Variables. I: Parabolic Cylinder Coordinates , 1974 .

[9]  P. Winternitz,et al.  A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .

[10]  W. Miller,et al.  Lie Theory and Special Functions , 1969 .

[11]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[12]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[13]  R. P. Gillespie,et al.  Periodic Differential Equations , 1963 .

[14]  L. Weisner Group-theoretic origin of certain generating functions , 1955 .

[15]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[16]  H. Bateman Partial Differential Equations of Mathematical Physics , 1932 .

[17]  W. Miller Symmetry, Separation of Variables, and Special Functions , 1975 .

[18]  Academic press. , 1972, Analytical chemistry.

[19]  W. Miller Symmetry groups and their applications , 1972 .

[20]  F. M. Arscott,et al.  III.—Theory of the Whittaker Hill Equation , 1970, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[21]  H. Buchholz The Confluent Hypergeometric Function , 1969 .

[22]  W. Miller Special Functions and the Complex Euclidean Group in 3‐Space. I , 1968 .

[23]  B. Viswanathan Generating Functions for Ultraspherical Functions , 1968, Canadian Journal of Mathematics.

[24]  P. Winternitz,et al.  QUANTUM NUMBERS IN THE LITTLE GROUPS OF THE POINCARE GROUP. , 1966 .

[25]  H. Wenzel F. W. Schäfke, Einführung in die Theorie der speziellen Funktionen der mathematischen Physik (Die Grundlehren der mathematischen Wissenschaften, Band 118). VIII + 249 S. m. 1 Abb. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 49,40 , 1965 .

[26]  W. Braunbek,et al.  Schäfke: Einführung in die Theorie der speziellen Funktionen der mathematischen Physik/Greub: Linear Algebra/Bermant: A Course of Mathematical Analysis/Bopp: Werner Heisenberg und die Physik unserer Zeit/Sproull: Modern Physics/Sharman: Vibrations and Wav , 1964 .

[27]  F. Schäfke Einführung in die Theorie der speziellen Funktionen der mathematischen Physik , 1963 .