Symmetry and separation of variables for the Helmholtz and Laplace equations
暂无分享,去创建一个
[1] W. Miller,et al. Lie theory and separation of variables. 10. Nonorthogonal R‐separable solutions of the wave equation ∂ttψ=Δ2ψ , 1976 .
[2] W. Miller,et al. Lie theory and separation of variables. 9. Orthogonal R‐separable coordinate systems for the wave equation ψtt−Δ2ψ=0 , 1976 .
[3] W. Miller,et al. Lie theory and separation of variables. 11. The EPD equation , 1976 .
[4] W. Miller,et al. Lie theory and separation of variables. 8. Semisubgroup coordinates for ψtt-Δ2ψ=0 , 1975 .
[5] W. Miller,et al. Lie theory and separation of variables. 6. The equation iUt + Δ2U = 0 , 1975 .
[6] J. Miller. Lie Theory and Separation of Variables. II: Parabolic Coordinates , 1974 .
[7] W. Miller,et al. Lie theory and separation of variables. 4. The groups SO (2,1) and SO (3) , 1974 .
[8] J. Miller. Lie Theory and Separation of Variables. I: Parabolic Cylinder Coordinates , 1974 .
[9] P. Winternitz,et al. A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .
[10] W. Miller,et al. Lie Theory and Special Functions , 1969 .
[11] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[12] P. Winternitz,et al. A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .
[13] R. P. Gillespie,et al. Periodic Differential Equations , 1963 .
[14] L. Weisner. Group-theoretic origin of certain generating functions , 1955 .
[15] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[16] H. Bateman. Partial Differential Equations of Mathematical Physics , 1932 .
[17] W. Miller. Symmetry, Separation of Variables, and Special Functions , 1975 .
[18] Academic press. , 1972, Analytical chemistry.
[19] W. Miller. Symmetry groups and their applications , 1972 .
[20] F. M. Arscott,et al. III.—Theory of the Whittaker Hill Equation , 1970, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[21] H. Buchholz. The Confluent Hypergeometric Function , 1969 .
[22] W. Miller. Special Functions and the Complex Euclidean Group in 3‐Space. I , 1968 .
[23] B. Viswanathan. Generating Functions for Ultraspherical Functions , 1968, Canadian Journal of Mathematics.
[24] P. Winternitz,et al. QUANTUM NUMBERS IN THE LITTLE GROUPS OF THE POINCARE GROUP. , 1966 .
[25] H. Wenzel. F. W. Schäfke, Einführung in die Theorie der speziellen Funktionen der mathematischen Physik (Die Grundlehren der mathematischen Wissenschaften, Band 118). VIII + 249 S. m. 1 Abb. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 49,40 , 1965 .
[26] W. Braunbek,et al. Schäfke: Einführung in die Theorie der speziellen Funktionen der mathematischen Physik/Greub: Linear Algebra/Bermant: A Course of Mathematical Analysis/Bopp: Werner Heisenberg und die Physik unserer Zeit/Sproull: Modern Physics/Sharman: Vibrations and Wav , 1964 .
[27] F. Schäfke. Einführung in die Theorie der speziellen Funktionen der mathematischen Physik , 1963 .