Equivalence between classes of multipliers for slope-restricted nonlinearities

Different classes of multipliers have been proposed in the literature for obtaining stability criteria using passivity theory, integral quadratic constraint (IQC) theory or Lyapunov theory. Some of these classes of multipliers can be applied with slope-restricted nonlinearities. In this paper the concept of phase-containment is defined and it is shown that several classes are phase-contained within the class of Zames-Falb multipliers. There are two main consequences: firstly it follows that the class of Zames-Falb multipliers remains, to date, the widest class of available multipliers for slope-restricted nonlinearities; secondly further restrictions may be avoided when exploiting the parametrization of the other classes of multipliers.

[1]  J. Wen,et al.  Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[2]  Manuel Berenguel,et al.  A QFT Framework for Antiwindup Control Systems Design , 2010 .

[3]  Michael G. Safonov,et al.  Computer-aided stability analysis renders Papov criterion obsolete , 1987 .

[4]  Manfred Morari,et al.  Multiplier theory for stability analysis of anti-windup control systems , 1999, Autom..

[5]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[6]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[7]  Dmitry A. Altshuller Delay-Integral-Quadratic Constraints and Stability Multipliers for Systems With MIMO Nonlinearities , 2011, IEEE Transactions on Automatic Control.

[8]  Michael G. Safonov,et al.  Incremental positivity nonpreservation by stability multipliers , 2002, IEEE Trans. Autom. Control..

[9]  Michael G. Safonov,et al.  Computation of Zames-Falb Multipliers Revisited , 2010, IEEE Transactions on Automatic Control.

[10]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[11]  E. Jury,et al.  A stability inequality for a class of nonlinear feedback systems , 1966 .

[12]  Michael G. Safonov,et al.  All multipliers for repeated monotone nonlinearities , 2002, IEEE Trans. Autom. Control..

[13]  N. Barabanov,et al.  On the Kalman problem , 1988 .

[14]  Jose C. Geromel,et al.  A convex approach to the absolute stability problem , 1994, IEEE Trans. Autom. Control..

[15]  Guang Li,et al.  Comments on "On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities" , 2012, IEEE Trans. Autom. Control..

[16]  J. Willems,et al.  Frequency domain stability criteria--Part II , 1965 .

[17]  Alexander Lanzon,et al.  LMI search for rational anticausal Zames-Falb multipliers , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[18]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[19]  K. Narendra,et al.  An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity , 1968 .

[20]  Matthew C. Turner,et al.  A robust anti-windup design procedure for SISO systems , 2011, Int. J. Control.

[21]  Alexander Lanzon,et al.  On multipliers for bounded and monotone nonlinearities , 2013, ECC.

[22]  U. Jönsson Stability analysis with Popov multipliers and integral quadratic constraints , 1997 .

[23]  Aud J. L. IIrILLEMS Frequency Domain Stability Criteria-Part I , 1965 .

[24]  M. Gruber Path integrals and Lyapunov functionals , 1969 .

[25]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[26]  J. Willems Path integrals and stability , 1998 .

[27]  A. Wills,et al.  Zames-Falb multipliers for quadratic programming , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[28]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[29]  George Zames,et al.  Multipliers with real poles and zeros: An application of a theorem on stability conditions , 1968 .

[30]  Matthew C. Turner,et al.  ℒ2 gain bounds for systems with slope-restricted nonlinearities , 2010, Proceedings of the 2010 American Control Conference.

[31]  PooGyeon Park,et al.  Stability criteria of sector- and slope-restricted Lur'e systems , 2002, IEEE Trans. Autom. Control..

[32]  Alexander Lanzon,et al.  On multipliers for bounded and monotone nonlinearities , 2013, 2013 European Control Conference (ECC).

[33]  Manfred Morari,et al.  Multivariable anti-windup controller synthesis using linear matrix inequalities , 2001, Autom..

[34]  Matthew C. Turner,et al.  On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities , 2009, IEEE Transactions on Automatic Control.

[35]  P. Olver Nonlinear Systems , 2013 .

[36]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[37]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[38]  Alexander Lanzon,et al.  Factorization of multipliers in passivity and IQC analysis , 2011, CDC-ECE.

[39]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .