All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents

[1]  A Better Battery , 2021, Electric and Hybrid Vehicle Technology International.

[2]  Xiulin Fan,et al.  Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery , 2019, Chem.

[3]  Yongyao Xia,et al.  High-Energy Rechargeable Metallic Lithium Battery at -70 °C Enabled by a Cosolvent Electrolyte. , 2019, Angewandte Chemie.

[4]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[5]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[6]  Shanhai Ge,et al.  Fast charging of lithium-ion batteries at all temperatures , 2018, Proceedings of the National Academy of Sciences.

[7]  C. Nan,et al.  Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O , 2018, Journal of Power Sources.

[8]  Yongyao Xia,et al.  Organic Batteries Operated at −70°C , 2018 .

[9]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[10]  G. Ceder,et al.  Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials , 2018, Nature.

[11]  Xiulin Fan,et al.  Interphase Engineering Enabled All-Ceramic Lithium Battery , 2018 .

[12]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[13]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[14]  Yan Yu,et al.  The nanoscale circuitry of battery electrodes , 2017, Science.

[15]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[16]  Tae Kyoung Kim,et al.  Liquefied gas electrolytes for electrochemical energy storage devices , 2017, Science.

[17]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[18]  S. Choudhury,et al.  Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities , 2016 .

[19]  Chaoyang Wang,et al.  Lithium-ion battery structure that self-heats at low temperatures , 2016, Nature.

[20]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[21]  Joshua L. Allen,et al.  Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. , 2016, Physical chemistry chemical physics : PCCP.

[22]  Xiulin Fan,et al.  “Water‐in‐Salt” Electrolyte Enables High‐Voltage Aqueous Lithium‐Ion Chemistries. , 2016 .

[23]  M. Forsyth,et al.  Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts. , 2016, Physical chemistry chemical physics : PCCP.

[24]  Eric C Evarts Lithium batteries: To the limits of lithium , 2015, Nature.

[25]  W. Richards,et al.  First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets , 2015 .

[26]  Stefano Mossa,et al.  Li+ Solvation in Pure, Binary, and Ternary Mixtures of Organic Carbonate Electrolytes , 2014, 1411.7171.

[27]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[28]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[29]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[30]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[31]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[32]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[33]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[34]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[35]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[36]  Bruno Scrosati,et al.  A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning , 2011 .

[37]  A. Pádua,et al.  Molecular force field for ionic liquids v: hydroxyethylimidazolium, dimethoxy-2- methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. , 2010, The journal of physical chemistry. B.

[38]  Masuhiro Mikami,et al.  Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. , 2009, The journal of physical chemistry. B.

[39]  M. Armand,et al.  Building better batteries , 2008, Nature.

[40]  Jay F. Whitacre,et al.  Electrochemical performance and kinetics of Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and graphite anodes in low-temperature electrolytes , 2007 .

[41]  Stanford R. Ovshinsky,et al.  Recent advances in NiMH battery technology , 2007 .

[42]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[43]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[44]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[45]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[46]  T. A. Stuarta,et al.  HEV battery heating using AC currents , 2003 .

[47]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[48]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[49]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[50]  N. Dudney Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte , 2000 .

[51]  K. Abraham,et al.  2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries , 2000 .

[52]  C. Bayly,et al.  Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method , 2000, J. Comput. Chem..

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[58]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[59]  R. Cini,et al.  Temperature Dependence of the Magnetic Susceptibility of Water , 1968 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .