Consistent Nonparametric Regression for Functional Data Under the Stone–Besicovitch Conditions

In this paper, we address the problem of nonparametric regression estimation in the infinite-dimensional setting. We start by extending the Stone's seminal result to the case of metric spaces when the probability measure of the explanatory variables is tight. Then, under slight variations on the hypotheses, we state and prove the theorem for general metric measure spaces. From this result, we derive the mean square consistency of the k-NN and kernel estimators if the regression function is bounded and the Besicovitch condition holds. We also prove that, for the uniform kernel estimate, the Besicovitch condition is also necessary in order to attain L1 consistency for almost every x.

[1]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[2]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[3]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[4]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[5]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .

[6]  W. Chen LINEAR FUNCTIONAL ANALYSIS , 2008 .

[7]  Gilbert Saporta,et al.  PLS classification of functional data , 2005, Comput. Stat..

[8]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[9]  A. Cuevas,et al.  Linear functional regression: The case of fixed design and functional response , 2002 .

[10]  P. Sarda,et al.  Testing for No Effect in Functional Linear Regression Models, Some Computational Approaches , 2004 .

[11]  Gilbert Saporta,et al.  PLS regression on a stochastic process , 2001, Comput. Stat. Data Anal..

[12]  Gérard Biau,et al.  On the Kernel Rule for Function Classification , 2006 .

[13]  Arnaud Guyader,et al.  Nearest neighbor classification in infinite dimension , 2006 .

[14]  David Preiss,et al.  Differentiation of measures on Hilbert spaces , 1982 .

[15]  R. Toledano A note on the Lebesgue differentiation theorem in spaces of homogeneous type. , 2004 .

[16]  Arnaud Guyader,et al.  Rates of Convergence of the Functional $k$-Nearest Neighbor Estimate , 2010, IEEE Transactions on Information Theory.

[17]  DILEEP MENON,et al.  AN INTRODUCTION TO FUNCTIONAL ANALYSIS , 2010 .

[18]  Gilbert Saporta,et al.  Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..

[19]  Florentina Bunea,et al.  Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.

[20]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .

[21]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[22]  Pertti Mattila Differentiation of measures on uniform spaces , 1980 .

[23]  Amparo Baíllo,et al.  Local linear regression for functional predictor and scalar response , 2009, J. Multivar. Anal..