Parameter Estimation of Partial Differential Equation Models
暂无分享,去创建一个
Jiguo Cao | Arnab Maity | Raymond J. Carroll | Xiaolei Xun | Bani Mallick | R. Carroll | B. Mallick | Jiguo Cao | A. Maity | Xiaolei Xun
[1] Richard G. Vanderbeek,et al. Estimation and discrimination of aerosols using multiple wavelength LWIR lidar , 2010, Defense + Commercial Sensing.
[2] Jens Timmer,et al. Parameter Identification Techniques for Partial Differential Equations , 2004, Int. J. Bifurc. Chaos.
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] James O. Ramsay,et al. Principal differential analysis : Data reduction by differential operators , 1996 .
[5] Hulin Wu,et al. Statistical methods for HIV dynamic studies in AIDS clinical trials , 2005, Statistical methods in medical research.
[6] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[7] J. Timmer,et al. Fitting parameters in partial differential equations from partially observed noisy data , 2002 .
[8] Paul H. C. Eilers,et al. Splines, knots, and penalties , 2010 .
[9] Young K. Truong,et al. Polynomial splines and their tensor products in extended linearmodeling , 1997 .
[10] José María Amigó,et al. Space–Time Dynamics , 2010 .
[11] Scott M. Berry,et al. Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .
[12] Kevin M. Small,et al. Estimation and Inference , 2013 .
[13] Hulin Wu,et al. Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.
[14] L Wang,et al. Robust Estimation for Ordinary Differential Equation Models , 2011, Biometrics.
[15] Adrian F. M. Smith,et al. Automatic Bayesian curve fitting , 1998 .
[16] Jiguo Cao,et al. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[17] Hulin Wu,et al. Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics , 2008 .
[18] Parlitz,et al. Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.
[19] Holger Kantz,et al. FITTING PARTIAL DIFFERENTIAL EQUATIONS TO SPACE-TIME DYNAMICS , 1999 .
[20] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[21] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .
[22] P. James McLellan,et al. Parameter estimation in continuous-time dynamic models using principal differential analysis , 2006, Comput. Chem. Eng..
[23] Hulin Wu,et al. Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.
[24] Hulin Wu,et al. A Bayesian approach for estimating antiviral efficacy in HIV dynamic models , 2006 .
[25] Avishai Ben-David,et al. Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength lidar data. , 2008, Applied optics.
[26] Russell E. Warren,et al. Detection and classification of atmospheric aerosols using multi-wavelength CO2 lidar , 2007, SPIE Defense + Commercial Sensing.
[27] B. Marx,et al. Multivariate calibration with temperature interaction using two-dimensional penalized signal regression , 2003 .
[28] Lang Li,et al. Estimation and Inference for a Spline‐Enhanced Population Pharmacokinetic Model , 2002, Biometrics.
[29] V De Gruttola,et al. Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.
[30] A. Perelson,et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.
[31] W. Gilks. Markov Chain Monte Carlo , 2005 .
[32] Paul H. C. Eilers,et al. Multidimensional Penalized Signal Regression , 2005, Technometrics.
[33] Russell E. Warren,et al. Detection and classification of atmospheric aerosols using multi-wavelength LWIR LIDAR , 2009, Defense + Commercial Sensing.
[34] Trevor Hastie,et al. Polynomial splines and their tensor products in extended linear modeling. Discussion and rejoinder , 1997 .
[35] H Putter,et al. A Bayesian approach to parameter estimation in HIV dynamical models , 2002, Statistics in medicine.
[36] D. Ruppert,et al. Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .
[37] J. Friedman,et al. FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .
[38] Jiguo Cao,et al. Parameter estimation for differential equations: a generalized smoothing approach , 2007 .
[39] Martin A. Nowak,et al. Viral dynamics in human immunodeficiency virus type 1 infection , 1995, Nature.
[40] Young K. Truong,et al. Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .
[41] G. Stoyan. de Boor, C., A Practical Guide to Splines. Applied Mathematical Sciences 27. Berlin‐Heidelberg‐New York, Springer‐Verlag 1978. XXIV, 392 S., DM 32,50. US $ 17.90 , 1980 .
[42] J. Kurths,et al. Amplitude equations from spatiotemporal binary-fluid convection data , 1999 .
[43] H Wu,et al. Population HIV‐1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials , 1999, Biometrics.
[44] K. Morton,et al. Numerical Solution of Partial Differential Equations: Introduction , 2005 .
[45] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .