Parameter Estimation of Partial Differential Equation Models

Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online.

[1]  Richard G. Vanderbeek,et al.  Estimation and discrimination of aerosols using multiple wavelength LWIR lidar , 2010, Defense + Commercial Sensing.

[2]  Jens Timmer,et al.  Parameter Identification Techniques for Partial Differential Equations , 2004, Int. J. Bifurc. Chaos.

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  James O. Ramsay,et al.  Principal differential analysis : Data reduction by differential operators , 1996 .

[5]  Hulin Wu,et al.  Statistical methods for HIV dynamic studies in AIDS clinical trials , 2005, Statistical methods in medical research.

[6]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[7]  J. Timmer,et al.  Fitting parameters in partial differential equations from partially observed noisy data , 2002 .

[8]  Paul H. C. Eilers,et al.  Splines, knots, and penalties , 2010 .

[9]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linearmodeling , 1997 .

[10]  José María Amigó,et al.  Space–Time Dynamics , 2010 .

[11]  Scott M. Berry,et al.  Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .

[12]  Kevin M. Small,et al.  Estimation and Inference , 2013 .

[13]  Hulin Wu,et al.  Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.

[14]  L Wang,et al.  Robust Estimation for Ordinary Differential Equation Models , 2011, Biometrics.

[15]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[16]  Jiguo Cao,et al.  Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[17]  Hulin Wu,et al.  Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics , 2008 .

[18]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[19]  Holger Kantz,et al.  FITTING PARTIAL DIFFERENTIAL EQUATIONS TO SPACE-TIME DYNAMICS , 1999 .

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[22]  P. James McLellan,et al.  Parameter estimation in continuous-time dynamic models using principal differential analysis , 2006, Comput. Chem. Eng..

[23]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[24]  Hulin Wu,et al.  A Bayesian approach for estimating antiviral efficacy in HIV dynamic models , 2006 .

[25]  Avishai Ben-David,et al.  Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength lidar data. , 2008, Applied optics.

[26]  Russell E. Warren,et al.  Detection and classification of atmospheric aerosols using multi-wavelength CO2 lidar , 2007, SPIE Defense + Commercial Sensing.

[27]  B. Marx,et al.  Multivariate calibration with temperature interaction using two-dimensional penalized signal regression , 2003 .

[28]  Lang Li,et al.  Estimation and Inference for a Spline‐Enhanced Population Pharmacokinetic Model , 2002, Biometrics.

[29]  V De Gruttola,et al.  Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.

[30]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[31]  W. Gilks Markov Chain Monte Carlo , 2005 .

[32]  Paul H. C. Eilers,et al.  Multidimensional Penalized Signal Regression , 2005, Technometrics.

[33]  Russell E. Warren,et al.  Detection and classification of atmospheric aerosols using multi-wavelength LWIR LIDAR , 2009, Defense + Commercial Sensing.

[34]  Trevor Hastie,et al.  Polynomial splines and their tensor products in extended linear modeling. Discussion and rejoinder , 1997 .

[35]  H Putter,et al.  A Bayesian approach to parameter estimation in HIV dynamical models , 2002, Statistics in medicine.

[36]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[37]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[38]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[39]  Martin A. Nowak,et al.  Viral dynamics in human immunodeficiency virus type 1 infection , 1995, Nature.

[40]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[41]  G. Stoyan de Boor, C., A Practical Guide to Splines. Applied Mathematical Sciences 27. Berlin‐Heidelberg‐New York, Springer‐Verlag 1978. XXIV, 392 S., DM 32,50. US $ 17.90 , 1980 .

[42]  J. Kurths,et al.  Amplitude equations from spatiotemporal binary-fluid convection data , 1999 .

[43]  H Wu,et al.  Population HIV‐1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials , 1999, Biometrics.

[44]  K. Morton,et al.  Numerical Solution of Partial Differential Equations: Introduction , 2005 .

[45]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .