Hippocalcin protects hippocampal neurons against excitotoxin damage by enhancing calcium extrusion

[1]  F. Walker Huntington's disease , 2007, The Lancet.

[2]  Joong-Soo Han,et al.  Hippocalcin increases phospholipase D2 expression through extracellular signal‐regulated kinase activation and lysophosphatidic acid potentiates the hippocalcin‐induced phospholipase D2 expression , 2006, Journal of Cellular Biochemistry.

[3]  R. Burgoyne,et al.  Analysis of the interacting partners of the neuronal calcium‐binding proteins L‐CaBP1, hippocalcin, NCS‐1 and neurocalcin δ , 2006, Proteomics.

[4]  C. Chinopoulos,et al.  Calcium, mitochondria and oxidative stress in neuronal pathology , 2006, The FEBS journal.

[5]  R. Weinberg,et al.  Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons , 2006, Hippocampus.

[6]  H. Tsubokawa,et al.  Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory , 2005, Neuroscience.

[7]  G. Collingridge,et al.  Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD , 2005, Neuron.

[8]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[9]  J. Kukkonen,et al.  Hippocalcin protects against caspase-12-induced and age-dependent neuronal degeneration , 2005, Molecular and Cellular Neuroscience.

[10]  M. Yanai,et al.  Neuronal Calcium Sensor Protein Visinin-like Protein-3 Interacts with Microsomal Cytochrome b5 in a Ca2+-dependent Manner* , 2004, Journal of Biological Chemistry.

[11]  A. Tepikin,et al.  Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function , 2004, Trends in Neurosciences.

[12]  A. Tepikin,et al.  Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells , 2003, The Journal of cell biology.

[13]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[14]  P. Schauwecker Differences in ionotropic glutamate receptor subunit expression are not responsible for strain-dependent susceptibility to excitotoxin-induced injury. , 2003, Brain research. Molecular brain research.

[15]  J. Kukkonen,et al.  Neuronal apoptosis inhibitory protein: Structural requirements for hippocalcin binding and effects on survival of NGF-dependent sympathetic neurons. , 2002, Biochimica et biophysica acta.

[16]  M. Ashby,et al.  Differential Use of Myristoyl Groups on Neuronal Calcium Sensor Proteins as a Determinant of Spatio-temporal Aspects of Ca2+ Signal Transduction* , 2002, The Journal of Biological Chemistry.

[17]  Doo Yeon Kim,et al.  Cellular and molecular pathways of ischemic neuronal death. , 2002, Journal of biochemistry and molecular biology.

[18]  Ernesto Carafoli,et al.  Generation, Control, and Processing of Cellular Calcium Signals , 2001, Critical reviews in biochemistry and molecular biology.

[19]  R. Burgoyne,et al.  The neuronal calcium sensor family of Ca2+-binding proteins. , 2000, The Biochemical journal.

[20]  J. Kukkonen,et al.  NAIP interacts with hippocalcin and protects neurons against calcium‐induced cell death through caspase‐3‐dependent and ‐independent pathways , 2000, The EMBO journal.

[21]  D. Attwell,et al.  Glutamate release in severe brain ischaemia is mainly by reversed uptake , 2000, Nature.

[22]  M. Mattson,et al.  Concentration- and cell type-specific effects of calbindin D28k on vulnerability of hippocampal neurons to seizure-induced injury. , 2000, Brain research. Molecular brain research.

[23]  K. Takamatsu,et al.  Age-Related Changes in Expression of Hippocalcin and NVP2 in Rat Brain , 1999, Neurochemical Research.

[24]  I. Módy,et al.  Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice , 1998, Neuroscience.

[25]  A. Ogura,et al.  Glutamate responsiveness enhanced in neurones expressing amyloid precursor protein , 1997, Neuroreport.

[26]  R. Porsolt,et al.  Animal models of dementia , 1995 .

[27]  M. Chopp,et al.  Temporal Profile of in situ DNA Fragmentation after Transient Middle Cerebral Artery Occlusion in the Rat , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  B. Fredholm,et al.  A2a/D2 receptor interactions are not observed in COS-7 cells transiently transfected with dopamine D2 and adenosine A2a receptor cDNA. , 1994, Biochemical pharmacology.

[29]  V. Möckel,et al.  Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K , 1994, Brain Research.

[30]  R. Lin,et al.  Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia , 1994, Neuroscience Letters.

[31]  R. Miller,et al.  Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. , 1993, The Journal of physiology.

[32]  Y. Ben-Ari,et al.  Rapid Communication: Regional Variability in DNA Fragmentation After Global Ischemia Evidenced by Combined Histological and Gel Electrophoresis Observations in the Rat Brain , 1993, Journal of neurochemistry.

[33]  K. Takamatsu,et al.  Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. , 1993, The Journal of biological chemistry.

[34]  T. Stone,et al.  Neuropharmacology of quinolinic and kynurenic acids. , 1993, Pharmacological reviews.

[35]  G. Fagg,et al.  A comparative analysis of the neuroprotective properties of competitive and uncompetitive n-methyl-d-aspartate receptor antagonists in vivo: Implications for the process of excitotoxic degeneration and its therapy , 1993, Neuroscience.

[36]  K. Takamatsu,et al.  Distribution of hippocalcin mRNA and immunoreactivity in rat brain , 1993, Neuroscience Letters.

[37]  K. Takamatsu,et al.  Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. , 1992, Biochemical and biophysical research communications.

[38]  P. Emson,et al.  Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis , 1992, Neuron.

[39]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[40]  D. German,et al.  Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. , 1992, Brain research. Molecular brain research.

[41]  P. Somogyi,et al.  Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia , 1990, Experimental Brain Research.

[42]  D. Scherman,et al.  Regulation of neurotensin-containing neurons in the rat striatum. Effects of unilateral striatal lesions with quinolinic acid and ibotenic acid on neurotensin content and its binding site density , 1990, Brain Research.

[43]  D. Choi,et al.  The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. , 1990, Science.

[44]  D. Choi Ionic dependence of glutamate neurotoxicity , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  A. Ogura,et al.  Neuronal death in vitro: parallelism between survivability of hippocampal neurones and sustained elevation of cytosolic Ca2+ after exposure to glutamate receptor agonist , 2004, Experimental Brain Research.

[46]  E Schaefer,et al.  The MAP kinase kinase kinase MLK2 co‐localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3 , 1998, The EMBO journal.