Small Universal Devices

In this paper we overview several universal universality constructions for different type of devices based on (circular) string rewriting, multiset rewriting and splicing operations. We consider systems that have relatively small description and that are or can be effectively used for subsequent constructions of (small) universal devices.

[1]  Maurice Margenstern,et al.  Frontier between decidability and undecidability: a survey , 2000, Theor. Comput. Sci..

[2]  Artiom Alhazov,et al.  Small Universal Tvdh and Test Tube Systems , 2011, Int. J. Found. Comput. Sci..

[3]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[4]  Nicolas Ollinger,et al.  The Quest for Small Universal Cellular Automata , 2002, ICALP.

[5]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[6]  Artiom Alhazov,et al.  Minimization strategies for maximally parallel multiset rewriting systems , 2011, Theor. Comput. Sci..

[7]  Ivan Korec,et al.  Small Universal Register Machines , 1996, Theor. Comput. Sci..

[8]  A. I. Mal'cev Algorithms and Recursive Functions , 1970 .

[9]  Rudolf Freund,et al.  A Small Universal Antiport P System with Forbidden Context , 2006, DCFS.

[10]  Bianca Truthe,et al.  On the Power of Networks of Evolutionary Processors , 2007, MCU.

[11]  Piotr Lipinski,et al.  Improving Watermark Resistance against Removal Attacks Using Orthogonal Wavelet Adaptation , 2012, SOFSEM.

[12]  Shigeru Watanabe,et al.  5-Symbol 8-State and 5-Symbol 6-State Universal Turing Machines , 1961, JACM.

[13]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[14]  Jozef Gruska,et al.  Descriptional Complexity (of Languages) - A Short Survey , 1976, MFCS.

[15]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[16]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[17]  Jozef Gruska Foundations of Computing , 1997 .

[18]  Artiom Alhazov,et al.  Nine Universal Circular Post Machines , 2002, Comput. Sci. J. Moldova.

[19]  Sergiu Ivanov,et al.  Small Universal Networks of Evolutionary Processors , 2014, J. Autom. Lang. Comb..

[20]  José Mira,et al.  Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence , 2001, Lecture Notes in Computer Science.

[21]  L. Karl DNA computing: Arrival of biological mathematics , 1997 .

[22]  榊原 康文,et al.  G. Paun, G. Rozenberg and A. Salomaa : "DNA Computing-New Computing Paradigms", Springer-Verlag (1998) , 2000 .

[23]  Turlough Neary,et al.  Four Small Universal Turing Machines , 2007, Fundam. Informaticae.

[24]  David Corne,et al.  Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised Selected and Invited Papers , 2009, Workshop on Membrane Computing.

[25]  William I. Grosky,et al.  SOFSEM 2002: Theory and Practice of Informatics , 2002, Lecture Notes in Computer Science.

[26]  G Alford An Explicit Construction of a Universal Extended H System , 1997 .

[27]  John Cocke,et al.  Universality of Tag Systems with P = 2 , 1964, JACM.

[28]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[29]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[30]  Giancarlo Mauri,et al.  On the Universality of Post and Splicing Systems , 2000, MCU.

[31]  Rich Schroeppel,et al.  A Two Counter Machine Cannot Calculate 2N , 1972 .

[32]  Maurice Margenstern,et al.  Time-varying distributd H-systems of degree 2 generate all recursively enumerable languages , 2001, Where Mathematics, Computer Science, Linguistics and Biology Meet.

[33]  Serghei Verlan,et al.  P systems based on tag operations , 2012, Comput. Sci. J. Moldova.

[34]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[35]  Elisabeth Pelz,et al.  Small Universal Petri Nets with Inhibitor Arcs , 2013, ArXiv.

[36]  Jozef Gruska,et al.  Quantum Challenges , 1999, SOFSEM.

[37]  Victor Mitrana,et al.  Solving NP-Complete Problems With Networks of Evolutionary Processors , 2001, IWANN.

[38]  Maurice Margenstern,et al.  Time-Varying Distributed H Systems with Parallel Computations: The Problem Is Solved , 2003, DNA.

[39]  David I. Lewin,et al.  DNA computing , 2002, Comput. Sci. Eng..

[40]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[41]  Elisabeth Pelz,et al.  Small Universal Non-deterministic Petri Nets with Inhibitor Arcs , 2014, DCFS.

[42]  Turlough Neary,et al.  The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..

[43]  Pierluigi Frisco Direct constructions of universal extended H systems , 2003, Theor. Comput. Sci..

[44]  Yurii Rogozhin,et al.  On the Rule Complexity of Universal Tissue P Systems , 2005, Workshop on Membrane Computing.

[45]  Claude E. Shannon,et al.  A Universal Turing Machine with Two Internal States , 1956 .

[46]  Alexander Okhotin,et al.  Descriptional Complexity of Formal Systems , 2016, Theor. Comput. Sci..

[47]  Variants of Small Universal P Systems with Catalysts , 2015, Fundam. Informaticae.

[48]  Artiom Alhazov,et al.  On Small Universal Splicing Systems , 2012, Int. J. Found. Comput. Sci..

[49]  Hendrik Jan Hoogeboom,et al.  A Direct Construction of a Universal P System , 2002, Fundam. Informaticae.

[50]  Antoni Mazurkiewicz Mathematical Foundations of Computer Science 1976 , 1976, Lecture Notes in Computer Science.

[51]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[52]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..