The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation

[1]  L. Gao,et al.  Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[2]  D. Murphy,et al.  Evidence for O2- Radical Stabilization at Surface Oxygen Vacancies on Polycrystalline TiO2 , 2007 .

[3]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[4]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[5]  Y. Irokawa,et al.  Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation , 2006 .

[6]  T. Amemiya,et al.  Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts , 2006 .

[7]  J. Yao,et al.  Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. , 2006, The journal of physical chemistry. B.

[8]  Jinlong Zhang,et al.  Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization , 2006 .

[9]  Ling Wu,et al.  ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. , 2006, Environmental science & technology.

[10]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[11]  Hexing Li,et al.  Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. , 2006, The journal of physical chemistry. B.

[12]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[13]  C. Burda,et al.  Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles , 2004 .

[14]  R. T. Yang,et al.  Characterization and FTIR Studies of MnOx−CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3 , 2004 .

[15]  Shing-chung Wang,et al.  Effect of rapid thermal annealing on beryllium implanted p-type GaN , 2004 .

[16]  M. Miyauchi,et al.  Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[18]  P. Yue,et al.  The influence of surface properties on the photocatalytic activity of nanostructured TiO2 , 2003 .

[19]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[20]  A. Kudo,et al.  Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure , 2002 .

[21]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[22]  A. Maiti,et al.  Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2<-->O vacancy interactions. , 2001, Journal of the American Chemical Society.

[23]  B. Ohtani,et al.  Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy , 2001 .

[24]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[25]  Jimmy C. Yu,et al.  Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2 , 2000 .

[26]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[27]  S. Overbury,et al.  Chemisorption and reaction of NO and N2O on oxidized and reduced ceria surfaces studied by soft X-ray photoemission spectroscopy and desorption spectroscopy , 1999 .

[28]  Y. Nosaka,et al.  ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder , 1997 .

[29]  M. Anderson,et al.  Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Sol-Gel-Derived Titania Unmodified and Modified with H2SO4 , 1997 .

[30]  J. Falconer,et al.  Initial reaction steps in photocatalytic oxidation of aromatics , 1997 .

[31]  A. Sclafani,et al.  Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions , 1996 .

[32]  C. Real,et al.  Photo-induced Transformation, upon UV Illumination in Air, of Hyponitrite SpeciesN2O22- Preadsorbed onTiO2 Surface , 1996 .

[33]  L. A. Clark,et al.  Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2 , 1996 .

[34]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[35]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[36]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[37]  M. Graetzel,et al.  Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .

[38]  H. Boehm.,et al.  Über die Chemie der Oberfläche des Titandioxids. II. Saure Hydroxylgruppen auf der Oberfläche , 1969 .

[39]  Shuangxi Liu,et al.  An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue , 2007 .

[40]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[41]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[42]  M. Primet,et al.  Infrared study of the surface of titanium dioxides. I. Hydroxyl groups , 1971 .