Field Significance Revisited: Spatial Bias Errors in Forecasts as Applied to the Eta Model

Abstract The spatial structure of bias errors in numerical model output is valuable to both model developers and operational forecasters, especially if the field containing the structure itself has statistical significance in the face of naturally occurring spatial correlation. A semiparametric Monte Carlo method, along with a moving blocks bootstrap method is used to determine the field significance of spatial bias errors within spatially correlated error fields. This process can be completely automated, making it an attractive addition to the verification tools already in use. The process demonstrated here results in statistically significant spatial bias error fields at any arbitrary significance level. To demonstrate the technique, 0000 and 1200 UTC runs of the operational Eta Model and the operational Eta Model using the Kain–Fritsch convective parameterization scheme are examined. The resulting fields for forecast errors for geopotential heights and winds at 850, 700, 500, and 250 hPa over a period ...

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  Brian A. Colle,et al.  MM5 precipitation verification over the pacific northwest during the 1997-99 cool seasons , 2000 .

[3]  Glenn H. White,et al.  Performance of the National Meteorological Center's Medium-Range Model , 1989 .

[4]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[5]  Charles A. Doswell,et al.  On the Use of Mesoscale and Cloud-Scale Models in Operational Forecasting , 1992 .

[6]  François Lalaurette,et al.  Verification of the ECMWF Ensemble Prediction System Forecasts: A Study of Large-Scale Patterns , 2001 .

[7]  A. A new convective adjustment scheme. Part I: Observational and theoretical basis , 2006 .

[8]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[9]  Kenneth J. Westrick,et al.  Does Increasing Horizontal Resolution Produce More Skillful Forecasts , 2002 .

[10]  R. E. Livezey,et al.  Statistical Field Significance and its Determination by Monte Carlo Techniques , 1983 .

[11]  Brian A. Colle,et al.  Multiseason Verification of the MM5. Part I: Comparison with the Eta Model over the Central and Eastern United States and Impact of MM5 Resolution , 2003 .

[12]  Joseph B. Klemp,et al.  Behavior of flow over step orography , 2000 .

[13]  Charles A. Doswell,et al.  Analyzing and Forecasting Rocky Mountain Lee Cyclogenesis Often Associated with Strong Winds , 2000 .

[14]  Brian A. Colle,et al.  Multiseason Verification of the MM5. Part II: Evaluation of High-Resolution Precipitation Forecasts over the Northeastern United States , 2003 .

[15]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[16]  Clifford F. Mass,et al.  Major Numerical Forecast Failures over the Northeast Pacific , 2004 .

[17]  Allan H. Murphy A Coherent Method of Stratification within a General Framework for Forecast Verification , 1995 .

[18]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[19]  John Manobianco,et al.  Evaluation of the 29-km Eta Model. Part II: Subjective Verification over Florida , 1999 .

[20]  Robert D. Fletcher Two Outstanding Problems of Modern Meteorology , 1956 .

[21]  F. Colby A preliminary investigation of temperature errors in operational forecasting models , 1998 .

[22]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[23]  Michael E. Baldwin,et al.  Properties of the Convection Scheme in NCEP's Eta Model that Affect Forecast Sounding Interpretation , 2002 .

[24]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[25]  Brian A. Colle,et al.  Evaluation of the Timing and Strength of MM5 and Eta Surface Trough Passages over the Eastern Pacific , 2001 .

[26]  T. Black The new NMC mesoscale Eta Model: description and forecast examples , 1994 .

[27]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[28]  S. S. Shen,et al.  Estimation of Spatial Degrees of Freedom of a Climate Field , 1999 .

[29]  William A. Gallus The Impact of Step Orography on Flow in the Eta Model: Two Contrasting Examples , 2000 .

[30]  Daniel S. Wilks,et al.  Resampling Hypothesis Tests for Autocorrelated Fields , 1997 .

[31]  W. J. Steenburgh,et al.  Short-Term Forecast Validation of Six Models , 1999 .

[32]  Mark D. Powell,et al.  Accuracy of United States Tropical Cyclone Landfall Forecasts in the Atlantic Basin (1976–2000) , 2001 .