Draco: A Failure of the Tidal Model

We test whether the structural properties of the nearby dwarf spheroidal (dSph) galaxy Draco, a well-studied Milky Way companion, can be reconciled with the suggestion that dSphs are unbound tidal remnants with a large depth extent along the line of sight. In order to apply the observational test of this hypothesis, suggested by Klessen & Zhao, we use public photometric data from the Sloan Digital Sky Survey (SDSS) to explore the width of Draco's blue horizontal branch over a range of areas covering 0.06-6.25 deg2 centered on Draco. The SDSS database is the only currently existing database with sufficient depth and area coverage to permit a stringent test of the tidal models. Blue horizontal branch stars were chosen as tracers of Draco's spatial extent and depth because of their low contamination by Galactic foreground stars and since they have a spatially more extended distribution than the more centrally concentrated red horizontal branch stars. Indeed, we show that blue horizontal branch stars extend beyond the previously inferred limiting radii of Draco, consistent with the observed absence of a truncated stellar surface density profile of this dSph (Odenkirchen et al.). Following the method of Klessen & Kroupa, we calculate new models for a galaxy without dark matter, using Draco's morphological properties as constraints. The resulting models are unable to reproduce the narrow observed horizontal branch width of Draco, which stays roughly constant regardless of the field of view. We conclude that Draco cannot be the remnant of a tidally disrupted satellite but is probably strongly dark matter-dominated, as suggested independently by the structural analysis conducted by Odenkirchen et al. and by the kinematic analysis of Kleyna et al.

[1]  Reinhard E. Schielicke,et al.  Reviews in modern astronomy , 2003 .

[2]  R. J. Reynolds,et al.  A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2003, astro-ph/0301228.

[3]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[4]  F. Ferraro,et al.  The Draco and Ursa Minor Dwarf Spheroidal Galaxies: A Comparative Study , 2002, astro-ph/0209391.

[5]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. III. First Results from the Grid Giant Star Survey and Discovery of a Possible Nearby Sagittarius Tidal Structure in Virgo , 2002, astro-ph/0208276.

[6]  Robert H. Sanders,et al.  Modified Newtonian dynamics as an alternative to dark matter , 2002, astro-ph/0204521.

[7]  E. Olszewski,et al.  Structure of the Draco Dwarf Spheroidal Galaxy , 2002, astro-ph/0201297.

[8]  A. Helmi,et al.  The phase-space structure of a dark-matter halo , 2002, astro-ph/0201289.

[9]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[10]  N. Evans,et al.  First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal , 2001, astro-ph/0111329.

[11]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[12]  Ralf Klessen,et al.  Are Dwarf Spheroidal Galaxies Dark Matter Dominated or Remnants of Disrupted Larger Satellite Galaxies? A Possible Test , 2001, astro-ph/0110427.

[13]  N. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[14]  E. K. Grebel,et al.  Population Gradients in Local Group Dwarf Spheroidal Galaxies , 2001, astro-ph/0109121.

[15]  R. Carrera,et al.  The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy , 2001, astro-ph/0108159.

[16]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[17]  Warrick J. Couch,et al.  Galaxy Threshing and the Formation of Ultracompact Dwarf Galaxies , 2001, astro-ph/0106402.

[18]  D. Martinez-Delgado,et al.  A Tidal Extension in the Ursa Minor Dwarf Spheroidal Galaxy , 2001, astro-ph/0101456.

[19]  Chicago,et al.  Colors of 2625 Quasars at 0 < z < 5 Measured in the Sloan Digital Sky Survey Photometric System , 2000, astro-ph/0012449.

[20]  E. Grebel Star Formation Histories of Nearby Dwarf Galaxies , 2000, astro-ph/0011048.

[21]  M. Shetrone,et al.  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[22]  Amina Helmi,et al.  Mapping the substructure in the Galactic halo with the next generation of astrometric satellites , 2000, astro-ph/0007166.

[23]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. I. Survey Description and Calibration of the Photometric Search Technique , 2000, astro-ph/0006411.

[24]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[25]  Alyson G. Wilson,et al.  Star formation from the small to the large scale , 2000 .

[26]  E. Grebel,et al.  A New Culprit in the Second-Parameter Problem in the Sculptor Dwarf Spheroidal Galaxy? , 1999, astro-ph/9907156.

[27]  Xiaohui Fan,et al.  Simulation of Stellar Objects in SDSS Color Space , 1999, astro-ph/9902063.

[28]  A. Helmi,et al.  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[29]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  Michael J. Kurtz,et al.  A V and I CCD Mosaic Survey of the Ursa Minor Dwarf Spheroidal Galaxy , 1998 .

[32]  L. Hernquist,et al.  Measuring mass-loss rates from Galactic satellites , 1998, astro-ph/9805291.

[33]  R. Klessen,et al.  Dwarf Spheroidal Satellite Galaxies without Dark Matter: Results from Two Different Numerical Techniques , 1997, astro-ph/9711350.

[34]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[35]  J. Holtzman,et al.  Hubble Space Telescope Observations of the Draco Dwarf Spheroidal Galaxy , 1997, astro-ph/9709259.

[36]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[37]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[38]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[39]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[40]  M. Milgrom MOND and the Seven Dwarfs , 1995, astro-ph/9503056.

[41]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[42]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[43]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[44]  J. Kuhn Unbound dwarf spheroidal galaxies and the mass of the Milky Way , 1993 .

[45]  G. Klare Reviews in Modern Astronomy 2 , 1990 .

[46]  R. H. Miller,et al.  Dwarf spheroidal galaxies and resonant orbital coupling , 1989 .

[47]  B. Carney,et al.  Deep Photometry of the Draco Dwarf Spheroidal Galaxy , 1986 .

[48]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[49]  P. Stetson,et al.  THE MAIN-SEQUENCE TURN-OFF OF THE DRACO DWARF GALAXY. , 1985 .

[50]  M. Milgrom A Modification of the Newtonian dynamics: Implications for galaxies , 1983 .

[51]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[52]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[53]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[54]  J. Hesser Personal Impressions From IAU Symposium 192: The Stellar Content of the Local Group , 1999 .

[55]  G. Costa,et al.  The Nature of Elliptical Galaxies, 2nd Stromlo Symposium , 1997 .

[56]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .