Study of Protein–Probe Interaction and Protective Action of Surfactant Sodium Dodecyl Sulphate in Urea-Denatured HSA using Charge Transfer Fluorescence Probe Methyl Ester of N,N-Dimethylamino Naphthyl Acrylic Acid

[1]  N. Guchhait,et al.  Study of interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde with serum albumins: a spectroscopic study. , 2008, Journal of photochemistry and photobiology. B, Biology.

[2]  N. Guchhait,et al.  Photoinduced intramolecular charge transfer in methyl ester of N,N′-Dimethylaminonaphthyl-(acrylic)-acid: Spectroscopic measurement and quantum chemical calculations , 2008 .

[3]  K. Basu,et al.  Interaction of 7-hydroxyflavone with human serum albumin: a spectroscopic study. , 2008, Journal of photochemistry and photobiology. B, Biology.

[4]  A. Chakraborty,et al.  Photoinduced electron transfer in a protein-surfactant complex: probing the interaction of SDS with BSA. , 2006, The journal of physical chemistry. B.

[5]  Fangying Wu,et al.  Interaction of ICT receptor with serum albumins in aqueous buffer , 2006 .

[6]  N. Guchhait,et al.  Excited state intramolecular proton transfer in 3-hydroxy-2-naphthaldehyde : A combined study by absorption and emission spectroscopy and quantum chemical calculation , 2006 .

[7]  K. Bhattacharyya,et al.  Temperature dependence of solvation dynamics and anisotropy decay in a protein: ANS in bovine serum albumin. , 2006, The Journal of chemical physics.

[8]  Arabinda Mallick,et al.  Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H Indolo-[2,3-a] quinolizine with serum albumins. , 2005, The journal of physical chemistry. B.

[9]  J. McMillan,et al.  Covalent binding of the flavonoid quercetin to human serum albumin. , 2005, Journal of agricultural and food chemistry.

[10]  R. J. Green,et al.  Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. , 2005, Journal of agricultural and food chemistry.

[11]  M. A. Rothschild,et al.  Serum albumin , 2005, The American Journal of Digestive Diseases.

[12]  Liang Zhao,et al.  Ultrafast hydration dynamics in protein unfolding: human serum albumin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Birch,et al.  Extrinsic fluorescence probe study of human serum albumin using Nile red , 1996, Journal of Fluorescence.

[14]  A. Chattopadhyay,et al.  Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems , 1995, Journal of Fluorescence.

[15]  M. Engelke,et al.  Pyrene excitation via resonance energy transfer from protein tryptophan reveals a fluidity gradient in liver microsomes , 1993, Journal of Fluorescence.

[16]  B. Somogyi,et al.  Femtosecond transient absorption study of the dynamics of acrylodan in solution and attached to human serum albumin , 2003 .

[17]  C. Kumar,et al.  Tuning the Selectivity of Protein Photocleavage: Spectroscopic and Photochemical Studies , 1999 .

[18]  M. Cortijo,et al.  The Fluorescent Probe Prodan Characterizes the Warfarin Binding Site on Human Serum Albumin , 1999, Photochemistry and photobiology.

[19]  R. Das,et al.  Intramolecular Charge Transfer as Probing Reaction: Fluorescence Monitoring of Protein-Surfactant Interaction , 1997 .

[20]  M. Aronson,et al.  Spectroscopic Probe Analysis of Protein-Surfactant Interactions: The BSA/SDS System , 1995 .

[21]  D C Carter,et al.  Structure of serum albumin. , 1994, Advances in protein chemistry.

[22]  D. C. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1993, Nature.

[23]  K. Takeda,et al.  Reformation of the Helical Structure of Bovine Serum Albumin by the Addition of Small Amounts of Sodium Dodecyl Sulfate after the Disruption of the Structure by Urea , 1993 .

[24]  D C Carter,et al.  Three-dimensional structure of human serum albumin. , 1989, Science.

[25]  R. Reed Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. , 1986, The Journal of biological chemistry.

[26]  J. Lakowicz,et al.  Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. , 1984, Biochemistry.

[27]  R. Brodersen,et al.  Albumin-bilirubin binding mechanism. , 1983, The Journal of biological chemistry.

[28]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[29]  D. Hoekstra,et al.  Use of resonance energy transfer to monitor membrane fusion. , 1981, Biochemistry.

[30]  R. Druyan Albumin structure, function and uses: Edited by V. M. Rosenoer, M. Orate, and M. A. Rothschild. 397 pp., $45.00. New York, Pergamon Press, 1977 , 1978 .

[31]  R. Ivarie,et al.  Nucleus-dependent regulation of tyrosine aminotransferase degradation in hepatoma tissue culture cells. , 1977, The Journal of biological chemistry.

[32]  R. Reed Kinetics of bilirubin binding to bovine serum albumin and the effects of palmitate. , 1977, The Journal of biological chemistry.

[33]  B. Valeur,et al.  Anisotropic rotations in 1-naphthylamine. Existence of a red-edge transition moment normal to the ring plane , 1977 .

[34]  M. Rothschild,et al.  Albumin: Structure, Function and Uses , 1977 .

[35]  James R. Brown SERUM ALBUMIN: AMINO ACID SEQUENCE , 1977 .

[36]  G. Sudlow,et al.  Further characterization of specific drug binding sites on human serum albumin. , 1976, Molecular pharmacology.

[37]  T. Azumi,et al.  Shift of the emission band upon excitation at the long wavelength absorption edge. II. Importance of the solute–solvent interaction and the solvent reorientation relaxation process , 1975 .

[38]  G. Weber,et al.  Failure of Energy Transfer between Identical Aromatic Molecules on Excitation at the Long Wave Edge of the Absorption Spectrum. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Markus,et al.  Structural Effects of the Interaction of Human Serum Albumin with Sodium Decyl Sulfate1 , 1957 .

[40]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .