On the Convergence of Local Expansions of Layer Potentials

In a recently developed quadrature method (quadrature by expansion or QBX), it was demonstrated that weakly singular or singular layer potentials can be evaluated rapidly and accurately on-surface by making use of local expansions about carefully chosen off-surface points. In this paper, we derive estimates for the rate of convergence of these local expansions, providing the analytic foundation for the QBX method. The estimates may also be of mathematical interest, particularly for microlocal or asymptotic analysis in potential theory.

[1]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[2]  J. Miller Numerical Analysis , 1966, Nature.

[3]  David J. Haroldsen,et al.  Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..

[4]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[5]  L. M. Delves,et al.  On numerical contour integration round a closed contour , 1967 .

[6]  Michael J. Shelley,et al.  High-Order and Efficient Methods for the Vorticity Formulation of the Euler Equations , 1993, SIAM J. Sci. Comput..

[7]  Nikolaos I. Ioakimidis,et al.  Numerical evaluation of analytic functions by Cauchy's theorem , 1991 .

[8]  Ralf Hiptmair,et al.  Plane wave approximation of homogeneous Helmholtz solutions , 2011 .

[9]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..

[10]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[11]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[12]  Andreas Kloeckner Fast Algorithms for the Evaluation of Layer Potentials using “Quadrature by Expansion” , 2013 .

[13]  Jens Markus Melenk,et al.  Operator adapted spectral element methods I: harmonic and generalized harmonic polynomials , 1999, Numerische Mathematik.

[14]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[15]  M. E. Rose Elementary Theory of Angular Momentum , 1957 .

[16]  I. Graham,et al.  Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.

[17]  John Strain,et al.  Locally Corrected Multidimensional Quadrature Rules for Singular Functions , 1995, SIAM J. Sci. Comput..

[18]  L. M. Delvest,et al.  A Numerical Method for Locating the Zeros of an Analytic Function , 2010 .

[19]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[20]  Alex H. Barnett,et al.  Evaluation of Layer Potentials Close to the Boundary for Laplace and Helmholtz Problems on Analytic Planar Domains , 2013, SIAM J. Sci. Comput..

[21]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[22]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[23]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[24]  J. N. Lyness,et al.  A Numerical Method for Locating the Zeros of an Analytic Function , 1967 .

[25]  J. Thomas Beale,et al.  A Method for Computing Nearly Singular Integrals , 2000, SIAM J. Numer. Anal..

[26]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[27]  R. Kanwal Linear Integral Equations , 1925, Nature.

[28]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[29]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .