One-dimensional localized modes of spin-orbit-coupled Bose-Einstein condensates with spatially periodic modulated atom-atom interactions: Nonlinear lattices

Abstract Bose-Einstein condensates (BECs) provide a clear and controllable platform to study diverse intriguing emergent nonlinear effects that appear too in other physical settings, such as bright and dark solitons in mean-field theory as well as many-body physics. Various ways have been elaborated to stabilize bright solitons in BECs, three promising schemes among which are: optical lattices formed by counterpropagating laser beams, nonlinear managements mediated by Feshbach resonance, spin-orbit coupling engineered by dressing atomic spin states (hyperfine states of spinor atomic BECs) with laser beams. By combing the latter two schemes, we discover, from theory to calculations, that the two-component BECs with a spin-orbit coupling and cubic atom-atom interactions, whose nonlinear distributions exhibit a well-defined spatially periodic modulation (nonlinear lattice), can support one-dimensional localized modes of two kinds: fundamental solitons (with a single peak), and soliton pairs comprised of dipole solitons (anti-phase) or two-peak solitons (in-phase). The influence of three physical parameters: chemical potential of the system, strengths of both the Rashba spin-orbit coupling and atom-atom interactions, on the existence and stability of the localized modes is investigated based on linear-stability analysis and direct perturbed simulations. In particular, we demonstrate that the localized modes can be stable objects provided always that both the inter- and intraspecies interactions are attractive.

[1]  Matthew J. Davis,et al.  Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice. , 2014, Physical review letters.

[2]  Lluis Torner,et al.  Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. , 2014, Physical review letters.

[3]  T. Busch,et al.  Gap solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices , 2015, 1502.04409.

[4]  Boris A. Malomed,et al.  Solitons in nonlinear lattices , 2011 .

[5]  H Jing,et al.  Spin-orbit-coupled dipolar Bose-Einstein condensates. , 2012, Physical review letters.

[6]  P. Kevrekidis,et al.  Matter-wave bright solitons in spin-orbit coupled Bose-Einstein condensates. , 2012, Physical review letters.

[7]  Bin Liu,et al.  Two-dimensional composite solitons in Bose-Einstein condensates with spatially confined spin-orbit coupling , 2018, Commun. Nonlinear Sci. Numer. Simul..

[8]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[9]  Hui Zhai,et al.  Degenerate Quantum Gases with Spin-Orbit Coupling , 2019 .

[10]  V. A. Brazhnyi,et al.  THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES , 2004 .

[11]  Boris A. Malomed,et al.  Soliton Management in Periodic Systems , 2006 .

[12]  B. Malomed,et al.  Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Takeshi Mizushima,et al.  Textures of F = 2 spinor Bose-Einstein condensates with spin-orbit coupling , 2011 .

[14]  A. Fetter,et al.  Vortex Dynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate , 2013, Journal of Low Temperature Physics.

[15]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[16]  Boris A. Malomed,et al.  Multidimensional solitons: Well-established results and novel findings , 2016, 1603.04097.

[17]  P. S. Vinayagam,et al.  Bright soliton dynamics in spin orbit-Rabi coupled Bose-Einstein condensates , 2017, Commun. Nonlinear Sci. Numer. Simul..

[18]  G. Juzeliūnas,et al.  Magnetically generated spin-orbit coupling for ultracold atoms. , 2013, Physical review letters.

[19]  Hidetsugu Sakaguchi,et al.  Nonlinear Management of Topological Solitons in a Spin-Orbit-Coupled System , 2019, Symmetry.

[20]  Yan Liu,et al.  Mixed-mode solitons in quadrupolar BECs with spin-orbit coupling , 2017, Commun. Nonlinear Sci. Numer. Simul..

[21]  Rodislav Driben,et al.  Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity , 2015, 1507.05172.

[22]  M. Modugno,et al.  Solitons in Inhomogeneous Gauge Potentials: Integrable and Nonintegrable Dynamics. , 2019, Physical review letters.

[23]  Mikko Mottonen,et al.  Stationary states of trapped spin-orbit-coupled Bose-Einstein condensates , 2012 .

[24]  V. Konotop,et al.  Gap solitons in a spin-orbit-coupled Bose-Einstein condensate. , 2013, Physical review letters.

[25]  G. J. Conduit,et al.  Line of Dirac monopoles embedded in a Bose-Einstein condensate , 2012, 1209.1600.

[26]  D. Petrov,et al.  Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. , 2015, Physical review letters.

[27]  P. Cheiney,et al.  Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. , 2017, Physical review letters.

[28]  D. Frantzeskakis,et al.  Matter-wave dark solitons and their excitation spectra in spin-orbit coupled Bose-Einstein condensates , 2013, 1304.1742.

[29]  Chuanwei Zhang,et al.  Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. , 2011, Physical review letters.

[30]  Rafael M. P. Teixeira,et al.  Scattering of solitons in binary Bose–Einstein condensates with spin-orbit and Rabi couplings , 2018, Nonlinear Dynamics.

[31]  Y. Kartashov,et al.  Stable Multiring and Rotating Solitons in Two-Dimensional Spin-Orbit-Coupled Bose-Einstein Condensates with a Radially Periodic Potential. , 2019, Physical review letters.

[32]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[33]  Gadi Fibich,et al.  The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse , 2015 .

[34]  Luis Santos,et al.  Trapped two-dimensional condensates with synthetic spin-orbit coupling. , 2011, Physical review letters.

[35]  M. Modugno,et al.  Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. , 2017, Physical review letters.

[36]  Lluis Torner,et al.  Bright solitons from defocusing nonlinearities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Liangwei Zeng,et al.  Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions , 2019, Journal of the Optical Society of America B.

[38]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[39]  Takeshi Mizushima,et al.  Stable Skyrmions in SU(2) gauged Bose-Einstein condensates. , 2012, Physical review letters.

[40]  V. Konotop,et al.  Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates. , 2014, Physical review letters.

[41]  X. Gao,et al.  Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices , 2017, 1706.02500.

[42]  J. Zeng,et al.  1D Solitons in Saturable Nonlinear Media with Space Fractional Derivatives , 2019, Annalen der Physik.

[43]  A. A. Kolokolov,et al.  Stationary solutions of the wave equation in a medium with nonlinearity saturation , 1973 .

[44]  J. Brand,et al.  Soliton magnetization dynamics in spin-orbit-coupled Bose-Einstein condensates , 2012, 1203.6684.

[45]  Jian-Wei Pan,et al.  Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates , 2015, Science.

[46]  P. Cheiney,et al.  Quantum liquid droplets in a mixture of Bose-Einstein condensates , 2018 .

[47]  Ian Mondragon-Shem,et al.  Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling , 2008, 0809.3532.

[48]  B. Malomed,et al.  Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials , 2012, 1201.2254.

[49]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[50]  Boris A. Malomed,et al.  Frontiers in multidimensional self-trapping of nonlinear fields and matter , 2019, Nature Reviews Physics.

[51]  Peter D. Drummond,et al.  Half-quantum vortex state in a spin-orbit coupled Bose-Einstein condensate , 2012, 1201.1471.

[52]  B. Malomed,et al.  Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices. , 2018, Chaos.

[53]  Lluis Torner,et al.  Algebraic bright and vortex solitons in defocusing media. , 2011, Optics letters.

[54]  B. Malomed,et al.  Self-trapping of Fermi and Bose gases under spatially modulated repulsive nonlinearity and transverse confinement , 2013, 1303.6441.

[55]  Liangwei Zeng,et al.  One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice , 2019, Optics Letters.

[56]  J. Zeng,et al.  Self-trapped spatially localized states in combined linear-nonlinear periodic potentials , 2019, Frontiers of Physics.

[57]  Xiong-Jun Liu,et al.  Effect of induced spin-orbit coupling for atoms via laser fields. , 2008, Physical review letters.

[58]  Rodislav Driben,et al.  Soliton gyroscopes in media with spatially growing repulsive nonlinearity. , 2013, Physical review letters.

[59]  B. A. Malomed,et al.  One- and two-dimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting , 2017, 1712.09519.

[60]  Liangwei Zeng,et al.  Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities , 2020 .

[61]  Hidetsugu Sakaguchi,et al.  Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Boris A. Malomed,et al.  Three-dimensional hybrid vortex solitons , 2014, 1405.5977.

[63]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[64]  Massimo Inguscio,et al.  Collisions of Self-Bound Quantum Droplets. , 2018, Physical review letters.

[66]  Yi Li,et al.  Unconventional states of bosons with the synthetic spin–orbit coupling , 2013, 1301.5403.

[67]  David Laroze,et al.  Two-dimensional composite solitons in a spin-orbit-coupled fermi gas in free space , 2018, Commun. Nonlinear Sci. Numer. Simul..

[68]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[69]  Hui Zhai,et al.  Degenerate quantum gases with spin–orbit coupling: a review , 2014, Reports on progress in physics. Physical Society.

[70]  Tigran A. Sedrakyan,et al.  Vortices in spin-orbit-coupled Bose-Einstein condensates , 2011, 1108.4212.

[71]  B. Malomed,et al.  Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Ricardo Carretero-González,et al.  Emergent nonlinear phenomena in Bose-Einstein condensates : theory and experiment , 2008 .

[73]  D S Petrov,et al.  Ultradilute Low-Dimensional Liquids. , 2016, Physical review letters.

[74]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[75]  Jianhua Zeng,et al.  Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices , 2019, Advanced Photonics.

[76]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[77]  Paulsamy Muruganandam,et al.  Spotlighting phase separation in Rashba spin-orbit coupled Bose–Einstein condensates in two dimensions , 2018 .

[78]  Hidetsugu Sakaguchi,et al.  Vortex lattice solutions to the Gross-Pitaevskii equation with spin-orbit coupling in optical lattices , 2013, 1301.3565.

[79]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[80]  B. Malomed,et al.  Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[82]  N. Goldman,et al.  Light-induced gauge fields for ultracold atoms , 2013, Reports on progress in physics. Physical Society.

[83]  B. Malomed,et al.  Asymmetric solitons and domain walls supported by inhomogeneous defocusing nonlinearity. , 2012, Optics letters.

[84]  B. Malomed,et al.  Excited states of two-dimensional solitons supported by spin-orbit coupling and field-induced dipole-dipole repulsion , 2017, 1711.02874.

[85]  Boris A. Malomed,et al.  Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity , 2017, Frontiers of Physics.

[86]  B. Malomed,et al.  Purely Kerr nonlinear model admitting flat-top solitons. , 2019, Optics letters.

[87]  B. Malomed,et al.  Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices , 2012, 1201.4627.

[88]  Jung Hoon Han,et al.  Spin-orbit coupled Bose-Einstein condensate under rotation. , 2011, Physical review letters.

[89]  Victor Galitski,et al.  Spin–orbit coupling in quantum gases , 2013, Nature.

[90]  Hidetsugu Sakaguchi,et al.  Solitons in combined linear and nonlinear lattice potentials , 2010, 1001.0425.

[91]  Kerson Huang,et al.  Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties , 1957 .