Structure of disiloxane: A semiempirical and Post‐Hartree–Fock study

The semiempirical (MNDO, AM1, and PM3) and ab initio predicted structure of disiloxane is studied with a series of basis sets and inclusion of electron correlation at MP2, MP3, MP4, CCD, CCSD, and CCSD(T) levels. The calculated molecular geometry and barrier to linearization of the SiOSi bond angle are compared with previous theoretical and experimental values. Our results show that the calculated barrier to linearization is very sensitive to the number of polarization functions in the basis set. We also investigate the coupling between the SiOSi bond angle and the SiO bond length and calculate the Mulliken and electrostatic potential‐derived charges. For comparison purposes we also calculate the molecular geometry, the barrier to linearization of the SiOSi bond angle, and the atomic charges in hexamethyldisiloxane. © 1994 by John Wiley & Sons, Inc.

[1]  M. Harding,et al.  The crystal and molecular structures of disiloxane (at 108 K) and hexamethyldisiloxane (at 148 K) , 1979 .

[2]  A. D. McLean,et al.  The quantum mechanical calculation of rotational spectra. A comparison of methods for C2H2, HCN, HNC, HCO+, N2H+, CO and N2. Predictions for HCNH+, COH+, HBO, HBNH, and HBF+. , 1984, The Journal of chemical physics.

[3]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[4]  P A Kollman,et al.  Electrostatic potentials of proteins. 1. Carboxypeptidase A. , 1976, Journal of the American Chemical Society.

[5]  G. Csonka,et al.  AM1 and PM3 semiempirical molecular orbital study of silatranes. , 1993 .

[6]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[7]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[8]  F. J. Luque,et al.  Comparative study of the molecular electrostatic potential obtained from different wavefunctions. Reliability of the semiempirical MNDO wavefunction , 1990 .

[9]  Clarke W. Earley,et al.  Use of effective core potentials for ab initio calculations on molecular siloxanes and silicates , 1993, J. Comput. Chem..

[10]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[11]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[12]  G. Csonka,et al.  AM1 and PM3 semiempirical molecular orbital study of silatranes III. 1-Chlorosilatrane , 1993 .

[13]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[14]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[15]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[16]  M. Dewar,et al.  AM1 calculations for compounds containing silicon , 1987 .

[17]  W. J. Lafferty,et al.  Erratum: Far Infrared Spectrum of Disiloxane , 1961 .

[18]  F. Weinhold,et al.  Natural population analysis , 1985 .

[19]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[20]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[21]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[22]  Eamonn F. Healy,et al.  Revised MNDO Parameters for Silicon , 1986 .

[23]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[24]  J. E. Boggs,et al.  Importance of (p-d).pi. bonding in the siloxane bond , 1980 .

[25]  B. Luke An ab initio investigation of the lowest potential energy surface of disiloxane , 1993 .

[26]  R. J. Hill,et al.  Variation in d(T-O),d(T⋯T) and ∠TOT in silica and silicate minerals, phosphates and aluminates , 1979 .

[27]  J. Koput Ab initio study of the molecular structure and potential energy surface of disiloxane , 1990 .

[28]  P. Rague,et al.  A systematic survey of the effects of substituents on the structures and energies of the principal organic reaction intermediates , 1987 .

[29]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[30]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[31]  J. Aronson,et al.  Far Infrared Spectrum and Structure of Disiloxane , 1960 .

[32]  G. Scuseria,et al.  Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD) , 1989 .

[33]  Raymond J. Abraham,et al.  Charge calculations in molecular mechanics. III: Amino acids and peptides , 1985 .

[34]  A. Almenningen,et al.  The Molecular Structure of Disiloxane, (SiH3)2O. , 1963 .

[35]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[36]  K. Merz,et al.  Analysis of a large data base of electrostatic potential derived atomic charges , 1992 .

[37]  G. Sheldrick,et al.  Electron diffraction study of perfluorodisiloxane , 1970 .

[38]  Modesto Orozco,et al.  Effect of electron correlation on the electrostatic potential distribution of molecules , 1991 .

[39]  J. C. Jansen,et al.  On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy , 1987 .

[40]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[41]  Scott G. Wierschke,et al.  Structure and basicity of silyl ethers: a crystallographic and ab initio inquiry into the nature of silicon-oxygen interactions , 1990 .

[42]  P. Gömöry,et al.  An electron diffraction study of the molecular structure of hexamethyldisiloxane , 1976 .

[43]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[44]  G. Csonka,et al.  MNDO, AM1 and PM3 semiempirical molecular orbital study of 1-fluorosilatrane , 1993 .

[45]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[46]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[47]  J. Koput,et al.  The large-amplitude motions in quasi-symmetric top molecules with internal C3v rotors: Interpretation of the low frequency Raman spectrum of disiloxane☆ , 1983 .

[48]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[49]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[50]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[51]  W. Mortier,et al.  Influence of the Structure Type on the Intrinsic Framework Electronegativity and the Charge Distribution in Zeolites with SiO2 Composition , 1988 .

[52]  M. J. Flanagan,et al.  The determination of the potential function governing the low frequency bending mode of disiloxane , 1977 .

[53]  D. Robinson,et al.  Vibrational Spectra and Structure of Disiloxane and Disiloxane-d61 , 1956 .

[54]  A. Hopfinger,et al.  An ab initio investigation of disiloxane using extended basis sets and electron correlation , 1992 .

[55]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[56]  G. Sheldrick,et al.  An electron diffraction determination of the molecular structures of perchlorodisiloxane and methoxytrifluorosilane , 1971 .

[57]  J. Sauer,et al.  Molecular and electronic structure of disiloxane, an ab initio MO study , 1979 .

[58]  F. J. Luque,et al.  On the use of mixed basis sets to compute accurate molecular electrostatic potentials , 1989 .

[59]  Modesto Orozco,et al.  On the use of AM1 and MNDO wave functions to compute accurate electrostatic charges , 1990 .